Suppr超能文献

胰岛素原C肽的生理效应及治疗潜力

Physiological effects and therapeutic potential of proinsulin C-peptide.

作者信息

Yosten Gina L C, Maric-Bilkan Christine, Luppi Patrizia, Wahren John

机构信息

Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri;

Division of Cardiovascular Sciences, Vascular Biology and Hypertension Branch, National Heart, Lung and Blood Institute, Bethesda, Maryland; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi;

出版信息

Am J Physiol Endocrinol Metab. 2014 Dec 1;307(11):E955-68. doi: 10.1152/ajpendo.00130.2014. Epub 2014 Sep 23.

Abstract

Connecting Peptide, or C-peptide, is a product of the insulin prohormone, and is released with and in amounts equimolar to those of insulin. While it was once thought that C-peptide was biologically inert and had little biological significance beyond its role in the proper folding of insulin, it is now known that C-peptide binds specifically to the cell membranes of a variety of tissues and initiates specific intracellular signaling cascades that are pertussis toxin sensitive. Although it is now clear that C-peptide is a biologically active molecule, controversy still remains as to the physiological significance of the peptide. Interestingly, C-peptide appears to reverse the deleterious effects of high glucose in some tissues, including the kidney, the peripheral nerves, and the vasculature. C-peptide is thus a potential therapeutic agent for the treatment of diabetes-associated long-term complications. This review addresses the possible physiologically relevant roles of C-peptide in both normal and disease states and discusses the effects of the peptide on sensory nerve, renal, and vascular function. Furthermore, we highlight the intracellular effects of the peptide and present novel strategies for the determination of the C-peptide receptor(s). Finally, a hypothesis is offered concerning the relationship between C-peptide and the development of microvascular complications of diabetes.

摘要

连接肽,即C肽,是胰岛素原激素的产物,与胰岛素等摩尔量释放。曾经有人认为C肽在生物学上是惰性的,除了在胰岛素正确折叠中发挥作用外几乎没有生物学意义,但现在已知C肽能特异性结合多种组织的细胞膜,并启动对百日咳毒素敏感的特定细胞内信号级联反应。尽管现在很清楚C肽是一种生物活性分子,但关于该肽的生理意义仍存在争议。有趣的是,C肽似乎能逆转高血糖在某些组织(包括肾脏、周围神经和血管系统)中的有害作用。因此,C肽是治疗糖尿病相关长期并发症的潜在治疗剂。本综述探讨了C肽在正常和疾病状态下可能的生理相关作用,并讨论了该肽对感觉神经、肾脏和血管功能的影响。此外,我们强调了该肽的细胞内作用,并提出了确定C肽受体的新策略。最后,提出了一个关于C肽与糖尿病微血管并发症发生发展关系的假说。

相似文献

1
Physiological effects and therapeutic potential of proinsulin C-peptide.
Am J Physiol Endocrinol Metab. 2014 Dec 1;307(11):E955-68. doi: 10.1152/ajpendo.00130.2014. Epub 2014 Sep 23.
2
Proinsulin C-peptide: friend or foe in the development of diabetes-associated complications?
Vasc Health Risk Manag. 2008;4(6):1283-8. doi: 10.2147/vhrm.s3955.
3
The effect of C-peptide on diabetic nephropathy: A review of molecular mechanisms.
Life Sci. 2019 Nov 15;237:116950. doi: 10.1016/j.lfs.2019.116950. Epub 2019 Oct 9.
4
Intracellular signalling by C-peptide.
Exp Diabetes Res. 2008;2008:635158. doi: 10.1155/2008/635158.
5
C-peptide: much more than a byproduct of insulin biosynthesis.
Pancreas. 2004 Oct;29(3):231-8. doi: 10.1097/00006676-200410000-00009.
6
The actions of C-peptide in HEK293 cells are dependent upon insulin and extracellular glucose concentrations.
Peptides. 2022 Apr;150:170718. doi: 10.1016/j.peptides.2021.170718. Epub 2021 Dec 23.
7
C-peptide makes a comeback.
Diabetes Metab Res Rev. 2003 Sep-Oct;19(5):345-7. doi: 10.1002/dmrr.403.
8
9
Molecular effects of proinsulin C-peptide.
Biochem Biophys Res Commun. 2002 Aug 2;295(5):1035-40. doi: 10.1016/s0006-291x(02)00721-0.
10
C-peptide in diabetes diagnosis and therapy.
Front Biosci (Elite Ed). 2013 Jan 1;5(1):214-23. doi: 10.2741/e609.

引用本文的文献

1
Finishing the odyssey to a stem cell cure for type 1 diabetes.
NPJ Metab Health Dis. 2024 Jul 22;2(1):9. doi: 10.1038/s44324-024-00014-5.
3
Decoding MODY: exploring genetic roots and clinical pathways.
Diabetol Int. 2025 Mar 14;16(2):257-271. doi: 10.1007/s13340-025-00809-x. eCollection 2025 Apr.
4
Hyperinsulinemic male LEW.1WR1 rats show early signs of impaired liver metabolism.
Exp Mol Pathol. 2025 Mar;141:104955. doi: 10.1016/j.yexmp.2025.104955. Epub 2025 Feb 11.
6
The metabolome as a diagnostic for maximal aerobic capacity during exercise in type 1 diabetes.
Diabetologia. 2024 Jul;67(7):1413-1428. doi: 10.1007/s00125-024-06153-0. Epub 2024 Apr 25.
7
Future clinical prospects of C-peptide testing in the early diagnosis of gestational diabetes.
World J Exp Med. 2024 Mar 20;14(1):89320. doi: 10.5493/wjem.v14.i1.89320.
8
The Correlation Between C-Peptide and Severity of Peripheral Atherosclerosis in Type 2 Diabetes Mellitus.
Diabetes Metab Syndr Obes. 2023 Aug 29;16:2617-2625. doi: 10.2147/DMSO.S426956. eCollection 2023.
9
Prediagnostic markers of insulin resistance and prostate cancer risk and death: A pooled study.
Cancer Med. 2023 Jun;12(12):13732-13744. doi: 10.1002/cam4.6004. Epub 2023 Apr 27.
10
The association between C-peptide and atrial cardiomyopathy in nondiabetic adults: results from NHANES III.
Heart Vessels. 2023 Aug;38(8):1049-1055. doi: 10.1007/s00380-023-02259-4. Epub 2023 Mar 16.

本文引用的文献

1
Autocrine C-peptide mechanism underlying INS1 beta cell adaptation to oxidative stress.
Diabetes Metab Res Rev. 2014 Oct;30(7):599-609. doi: 10.1002/dmrr.2528.
2
AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function.
J Clin Invest. 2013 Nov;123(11):4888-99. doi: 10.1172/JCI66218. Epub 2013 Oct 25.
3
Synergistic effects of C-peptide and insulin on low O2-induced ATP release from human erythrocytes.
Am J Physiol Regul Integr Comp Physiol. 2013 Dec;305(11):R1331-6. doi: 10.1152/ajpregu.00341.2013. Epub 2013 Oct 2.
4
C-peptide preserves the renal microvascular architecture in the streptozotocin-induced diabetic rat.
J Diabetes Complications. 2013 Nov-Dec;27(6):538-47. doi: 10.1016/j.jdiacomp.2013.07.002. Epub 2013 Aug 29.
5
Dynamic localization and functional implications of C-peptide might for suppression of iNOS in high glucose-stimulated rat mesangial cells.
Mol Cell Endocrinol. 2013 Dec 5;381(1-2):255-60. doi: 10.1016/j.mce.2013.08.007. Epub 2013 Aug 22.
6
C-peptide activates AMPKα and prevents ROS-mediated mitochondrial fission and endothelial apoptosis in diabetes.
Diabetes. 2013 Nov;62(11):3851-62. doi: 10.2337/db13-0039. Epub 2013 Jul 24.
7
Evidence for an interaction between proinsulin C-peptide and GPR146.
J Endocrinol. 2013 Jul 11;218(2):B1-8. doi: 10.1530/JOE-13-0203. Print 2013.
10
Relaxin family peptides and their receptors.
Physiol Rev. 2013 Jan;93(1):405-80. doi: 10.1152/physrev.00001.2012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验