Bernstein Group Detailed Modeling of Signal Processing in Neurons, University of Heidelberg and University of Frankfurt Heidelberg/Frankfurt, Germany ; Department of Simulation and Modeling, Goethe Center for Scientific Computing, University of Frankfurt Frankfurt, Germany.
Bernstein Center for Computational Neuroscience Heidelberg-Mannheim Heidelberg/Mannheim, Germany ; Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg Heidelberg, Germany.
Front Comput Neurosci. 2014 Sep 9;8:101. doi: 10.3389/fncom.2014.00101. eCollection 2014.
The morphology of presynaptic specializations can vary greatly ranging from classical single-release-site boutons in the central nervous system to boutons of various sizes harboring multiple vesicle release sites. Multi-release-site boutons can be found in several neural contexts, for example at the neuromuscular junction (NMJ) of body wall muscles of Drosophila larvae. These NMJs are built by two motor neurons forming two types of glutamatergic multi-release-site boutons with two typical diameters. However, it is unknown why these distinct nerve terminal configurations are used on the same postsynaptic muscle fiber. To systematically dissect the biophysical properties of these boutons we developed a full three-dimensional model of such boutons, their release sites and transmitter-harboring vesicles and analyzed the local vesicle dynamics of various configurations during stimulation. Here we show that the rate of transmission of a bouton is primarily limited by diffusion-based vesicle movements and that the probability of vesicle release and the size of a bouton affect bouton-performance in distinct temporal domains allowing for an optimal transmission of the neural signals at different time scales. A comparison of our in silico simulations with in vivo recordings of the natural motor pattern of both neurons revealed that the bouton properties resemble a well-tuned cooperation of the parameters release probability and bouton size, enabling a reliable transmission of the prevailing firing-pattern at diffusion-limited boutons. Our findings indicate that the prevailing firing-pattern of a neuron may determine the physiological and morphological parameters required for its synaptic terminals.
突触前特化结构的形态差异很大,从中枢神经系统中典型的单一释放位点囊泡到具有多个囊泡释放位点的各种大小的囊泡。多释放位点囊泡可以在几种神经环境中找到,例如在果蝇幼虫体壁肌肉的神经肌肉接点 (NMJ)。这些 NMJ 是由两个运动神经元形成的,形成两种具有两个典型直径的谷氨酸能多释放位点囊泡。然而,尚不清楚为什么这些不同的神经末梢结构用于同一突触后肌纤维。为了系统地剖析这些囊泡的生物物理特性,我们开发了一种完整的三维模型,包括这些囊泡、它们的释放位点和携带递质的囊泡,并在刺激过程中分析了各种构型的局部囊泡动力学。在这里,我们表明,囊泡的传递速率主要受基于扩散的囊泡运动限制,囊泡释放的概率和囊泡的大小会在不同的时间域影响囊泡的性能,从而允许在不同的时间尺度上对神经信号进行最佳的传递。我们对两种神经元自然运动模式的体内记录进行了体内模拟比较,结果表明,囊泡特性类似于释放概率和囊泡大小参数的良好协调,使得扩散限制囊泡能够可靠地传递流行的放电模式。我们的研究结果表明,神经元的流行放电模式可能决定了其突触末端所需的生理和形态参数。