Knodel Markus M, Dutta Roy Ranjita, Wittum Gabriel
Goethe Center for Scientific Computing (GCSC), Goethe Universität Frankfurt, Frankfurt, Germany.
Science for Life Laboratory, KTH Stockholm, Stockholm, Sweden.
Front Comput Neurosci. 2022 May 2;16:855746. doi: 10.3389/fncom.2022.855746. eCollection 2022.
The relation of form and function, namely the impact of the synaptic anatomy on calcium dynamics in the presynaptic bouton, is a major challenge of present (computational) neuroscience at a cellular level. The Drosophila larval neuromuscular junction (NMJ) is a simple model system, which allows studying basic effects in a rather simple way. This synapse harbors several special structures. In particular, in opposite to standard vertebrate synapses, the presynaptic boutons are rather large, and they have several presynaptic zones. In these zones, different types of anatomical structures are present. Some of the zones bear a so-called T-bar, a particular anatomical structure. The geometric form of the T-bar resembles the shape of the letter "T" or a table with one leg. When an action potential arises, calcium influx is triggered. The probability of vesicle docking and neurotransmitter release is superlinearly proportional to the concentration of calcium close to the vesicular release site. It is tempting to assume that the T-bar causes some sort of calcium accumulation and hence triggers a higher release probability and thus enhances neurotransmitter exocytosis. In order to study this influence in a quantitative manner, we constructed a typical T-bar geometry and compared the calcium concentration close to the active zones (AZs). We compared the case of synapses with and without T-bars. Indeed, we found a substantial influence of the T-bar structure on the presynaptic calcium concentrations close to the AZs, indicating that this anatomical structure increases vesicle release probability. Therefore, our study reveals how the T-bar zone implies a strong relation between form and function. Our study answers the question of experimental studies (namely "Wichmann and Sigrist, Journal of neurogenetics 2010") concerning the sense of the anatomical structure of the T-bar.
形式与功能的关系,即突触解剖结构对突触前终扣中钙动力学的影响,是当前细胞水平(计算)神经科学面临的一项重大挑战。果蝇幼虫神经肌肉接头(NMJ)是一个简单的模型系统,它能够以相当简单的方式研究基本效应。这个突触具有几种特殊结构。特别是,与标准的脊椎动物突触不同,突触前终扣相当大,并且有几个突触前区域。在这些区域中,存在不同类型的解剖结构。其中一些区域带有一种所谓的T形杆,这是一种特殊的解剖结构。T形杆的几何形状类似于字母“T”或单腿桌子的形状。当动作电位产生时,会触发钙内流。囊泡对接和神经递质释放的概率与靠近囊泡释放位点的钙浓度呈超线性比例关系。很容易推测T形杆会导致某种钙积累,从而触发更高的释放概率,进而增强神经递质的胞吐作用。为了定量研究这种影响,我们构建了一个典型的T形杆几何结构,并比较了靠近活性区(AZs)的钙浓度。我们比较了有T形杆和没有T形杆的突触情况。确实,我们发现T形杆结构对靠近AZs的突触前钙浓度有显著影响,表明这种解剖结构增加了囊泡释放概率。因此,我们的研究揭示了T形杆区域如何暗示形式与功能之间的紧密关系。我们的研究回答了实验研究(即“Wichmann和Sigrist,《神经遗传学杂志》2010年”)中关于T形杆解剖结构意义的问题。