Suppr超能文献

神经盒:多尺度神经科学中的计算数学

NeuroBox: Computational Mathematics in Multiscale Neuroscience.

作者信息

Stepniewski M, Breit M, Hoffer M, Queisser G

机构信息

G-CSC, Goethe University Frankfurt, Frankfurt Germany.

Department of Mathematics, Temple University, Philadelphia, USA.

出版信息

Comput Vis Sci. 2019 Sep;20(3-6):111-124. doi: 10.1007/s00791-019-00314-0. Epub 2019 Jun 14.

Abstract

The brain is a complex organ operating on multiple scales. From molecular events that inform electrical and biochemical cellular responses, the brain interconnects processes all the way up to the massive network size of billions of brain cells. This strongly coupled, nonlinear, system has been subject to research that has turned increasingly multidisciplinary. The seminal work of Hodgkin and Huxley in the 1950s made use of experimental data to derive a coherent physical model of electrical signaling in neurons, which can be solved using mathematical and computational methods, thus bringing together neuroscience, physics, mathematics, and computer science. Over the last decades numerous projects have been dedicated to modeling and simulation of specific parts of molecular dynamics, neuronal signaling, and neural network behavior. Simulators have been developed around a specific objective and scale, in order to cope with the underlying computational complexity. Often times a dimension reduction approach allows larger scale simulations, this however has the inherent drawback of losing insight into structure-function interplay at the cellular level. This paper gives an overview of the project NeuroBox that has the objective of integrating multiple brain scales and associated physical models into one unified framework. NeuroBox hosts geometry and anatomical reconstruction methods, such that detailed three-dimensional domains can be integrated into numerical simulations of models based on partial differential equations. The project further focusses on deriving numerical methods for handling complex computational domains, and to couple multiple spatial dimensions. The latter allows the user to specify in which parts of the biological problem high-dimensional representations are necessary and where low-dimensional approximations are acceptable. NeuroBox offers workflow user interfaces that are automatically generated with VRL-Studio and can be controlled by non-experts. The project further uses uG4 as the numerical backend, and therefore accesses highly advanced discretization methods as well as hierarchical and scalable numerical solvers for very large neurobiological problems.

摘要

大脑是一个在多个尺度上运作的复杂器官。从引发电和生化细胞反应的分子事件开始,大脑将各个过程相互连接,一直到由数十亿个脑细胞组成的庞大网络规模。这个强耦合的非线性系统一直是多学科研究的对象。20世纪50年代霍奇金和赫胥黎的开创性工作利用实验数据推导出了神经元电信号的连贯物理模型,该模型可以用数学和计算方法求解,从而将神经科学、物理学、数学和计算机科学结合在一起。在过去几十年里,许多项目致力于分子动力学、神经元信号传导和神经网络行为等特定部分的建模与模拟。模拟器围绕特定目标和尺度开发,以应对潜在的计算复杂性。通常,降维方法允许进行更大规模的模拟,然而这有一个固有缺点,即会失去对细胞水平上结构 - 功能相互作用的洞察。本文概述了NeuroBox项目,其目标是将多个大脑尺度及相关物理模型整合到一个统一框架中。NeuroBox包含几何和解剖重建方法,这样详细的三维域可以被整合到基于偏微分方程的模型数值模拟中。该项目进一步专注于推导处理复杂计算域的数值方法,并耦合多个空间维度。后者允许用户指定在生物问题的哪些部分需要高维表示,哪些部分可以接受低维近似。NeuroBox提供了由VRL - Studio自动生成且非专家也能控制的工作流用户界面。该项目还使用uG4作为数值后端,因此可以访问高度先进的离散化方法以及用于解决非常大的神经生物学问题的分层和可扩展数值求解器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3721/7583561/da8cfbb5b75d/nihms-1531952-f0001.jpg

相似文献

1
NeuroBox: Computational Mathematics in Multiscale Neuroscience.神经盒:多尺度神经科学中的计算数学
Comput Vis Sci. 2019 Sep;20(3-6):111-124. doi: 10.1007/s00791-019-00314-0. Epub 2019 Jun 14.

本文引用的文献

2
Constructing Neuronal Network Models in Massively Parallel Environments.在大规模并行环境中构建神经网络模型。
Front Neuroinform. 2017 May 16;11:30. doi: 10.3389/fninf.2017.00030. eCollection 2017.
5
Building the Neuronal Microtubule Cytoskeleton.构建神经元微管细胞骨架。
Neuron. 2015 Aug 5;87(3):492-506. doi: 10.1016/j.neuron.2015.05.046.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验