Suppr超能文献

用于太阳能电池的CdSe-CdS量子点共敏化ZnO分级杂化物,具有增强的光电转换效率。

CdSe-CdS quantum dots co-sensitized ZnO hierarchical hybrids for solar cells with enhanced photo-electrical conversion efficiency.

作者信息

Yuan Zhimin, Yin Longwei

机构信息

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China.

出版信息

Nanoscale. 2014 Nov 7;6(21):13135-44. doi: 10.1039/c4nr04262j.

Abstract

We have developed a facile method to fabricate CdSe-CdS quantum dot sensitized hierarchical ZnO nanostructures for quantum dot sensitized solar cells (QDSCs) by combining a hydrothermal method, successive ionic layer adsorption and chemical reaction (SILAR) techniques. The method consists of the growth of the ZnO hierarchical structure on ITO substrates via a hydrothermal method and the layer deposition of double quantum dots CdSe and CdS by SILAR. The CdSe-CdS QDs co-sensitized ZnO hierarchical structures show enhanced light absorption in the entire visible light range. The photovoltaic performance of QDCSs based on CdSe-CdS QDs co-sensitized ZnO hierarchical structures was evaluated. As photoanodes for QDSCs, the CdSe-CdS QDs double-sensitized ZnO hierarchical structures demonstrate an increased Jsc and improved power conversion efficiency of up to 1.39%. Under light illumination, photons are captured by QDs, yielding electron-hole pairs that are rapidly separated into electrons and holes at the interface between the ZnO and the QDs. The electrons are transferred to the conduction band of ZnO and the holes are released by redox couples in the liquid polysulfide (S(2-)/Sx(2-)) electrolyte, resulting in greatly improved photo-electrical conversion efficiency of QDSCs. The results suggest that it is very promising and feasible to enhance light absorption, carrier generation, and effective carrier separation via band engineering by CdSe-CdS QDs co-sensitization, and the method reported here displays a great potential for applications to be scaled up.

摘要

我们通过结合水热法、连续离子层吸附和化学反应(SILAR)技术,开发了一种简便的方法来制备用于量子点敏化太阳能电池(QDSC)的CdSe-CdS量子点敏化分级ZnO纳米结构。该方法包括通过水热法在ITO衬底上生长ZnO分级结构,并通过SILAR沉积双层量子点CdSe和CdS。CdSe-CdS量子点共敏化的ZnO分级结构在整个可见光范围内显示出增强的光吸收。评估了基于CdSe-CdS量子点共敏化ZnO分级结构的量子点敏化太阳能电池(QDCS)的光伏性能。作为量子点敏化太阳能电池的光阳极,CdSe-CdS量子点双敏化的ZnO分级结构表现出更高的短路电流密度(Jsc),功率转换效率提高到了1.39%。在光照下,量子点捕获光子,产生电子-空穴对,这些电子-空穴对在ZnO和量子点之间的界面处迅速分离成电子和空穴。电子转移到ZnO的导带,空穴由液态多硫化物(S(2-)/Sx(2-))电解质中的氧化还原对释放,从而大大提高了量子点敏化太阳能电池的光电转换效率。结果表明,通过CdSe-CdS量子点共敏化进行能带工程来增强光吸收、载流子产生和有效载流子分离是非常有前景且可行的,本文报道的方法在扩大应用规模方面显示出巨大潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验