Suppr超能文献

基于多孔径干涉测量法(MAI)的沿轨迹位移测量的理论精度。

Theoretical accuracy of along-track displacement measurements from multiple-aperture interferometry (MAI).

作者信息

Jung Hyung-Sup, Lee Won-Jin, Zhang Lei

机构信息

Department of Geoinformatics, The University of Seoul, 90 Jeonnong-dong, Dongdaemun-gu, Seoul 130-743, Korea.

The Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.

出版信息

Sensors (Basel). 2014 Sep 23;14(9):17703-24. doi: 10.3390/s140917703.

Abstract

The measurement of precise along-track displacements has been made with the multiple-aperture interferometry (MAI). The empirical accuracies of the MAI measurements are about 6.3 and 3.57 cm for ERS and ALOS data, respectively. However, the estimated empirical accuracies cannot be generalized to any interferometric pair because they largely depend on the processing parameters and coherence of the used SAR data. A theoretical formula is given to calculate an expected MAI measurement accuracy according to the system and processing parameters and interferometric coherence. In this paper, we have investigated the expected MAI measurement accuracy on the basis of the theoretical formula for the existing X-, C- and L-band satellite SAR systems. The similarity between the expected and empirical MAI measurement accuracies has been tested as well. The expected accuracies of about 2-3 cm and 3-4 cm (γ = 0.8) are calculated for the X- and L-band SAR systems, respectively. For the C-band systems, the expected accuracy of Radarsat-2 ultra-fine is about 3-4 cm and that of Sentinel-1 IW is about 27 cm (γ = 0.8). The results indicate that the expected MAI measurement accuracy of a given interferometric pair can be easily calculated by using the theoretical formula.

摘要

已使用多孔径干涉测量法(MAI)进行了精确的沿轨位移测量。对于ERS和ALOS数据,MAI测量的经验精度分别约为6.3厘米和3.57厘米。然而,估计的经验精度不能推广到任何干涉对,因为它们在很大程度上取决于所使用SAR数据的处理参数和相干性。给出了一个理论公式,用于根据系统和处理参数以及干涉相干性来计算预期的MAI测量精度。在本文中,我们基于该理论公式对现有的X波段、C波段和L波段卫星SAR系统研究了预期的MAI测量精度。还测试了预期和经验MAI测量精度之间的相似性。对于X波段和L波段SAR系统,分别计算出预期精度约为2 - 3厘米和3 - 4厘米(γ = 0.8)。对于C波段系统,Radarsat - 2超精细模式的预期精度约为3 - 4厘米,Sentinel - 1 IW模式的预期精度约为27厘米(γ = 0.8)。结果表明,使用该理论公式可以轻松计算给定干涉对的预期MAI测量精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edaa/4208245/fa78c6a9b45c/sensors-14-17703f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验