Suppr超能文献

基于双目标文化算法的进化策略比较

Comparing evolutionary strategies on a biobjective cultural algorithm.

作者信息

Lagos Carolina, Crawford Broderick, Cabrera Enrique, Soto Ricardo, Rubio José-Miguel, Paredes Fernando

机构信息

Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, 2362807 Valparaíso, Chile.

Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, 2362807 Valparaíso, Chile ; Universidad Finis Terrae, 7500000 Santiago, Chile.

出版信息

ScientificWorldJournal. 2014;2014:745921. doi: 10.1155/2014/745921. Epub 2014 Aug 31.

Abstract

Evolutionary algorithms have been widely used to solve large and complex optimisation problems. Cultural algorithms (CAs) are evolutionary algorithms that have been used to solve both single and, to a less extent, multiobjective optimisation problems. In order to solve these optimisation problems, CAs make use of different strategies such as normative knowledge, historical knowledge, circumstantial knowledge, and among others. In this paper we present a comparison among CAs that make use of different evolutionary strategies; the first one implements a historical knowledge, the second one considers a circumstantial knowledge, and the third one implements a normative knowledge. These CAs are applied on a biobjective uncapacitated facility location problem (BOUFLP), the biobjective version of the well-known uncapacitated facility location problem. To the best of our knowledge, only few articles have applied evolutionary multiobjective algorithms on the BOUFLP and none of those has focused on the impact of the evolutionary strategy on the algorithm performance. Our biobjective cultural algorithm, called BOCA, obtains important improvements when compared to other well-known evolutionary biobjective optimisation algorithms such as PAES and NSGA-II. The conflicting objective functions considered in this study are cost minimisation and coverage maximisation. Solutions obtained by each algorithm are compared using a hypervolume S metric.

摘要

进化算法已被广泛用于解决大型复杂的优化问题。文化算法(CAs)是一种进化算法,已被用于解决单目标优化问题,在一定程度上也用于解决多目标优化问题。为了解决这些优化问题,文化算法采用了不同的策略,如规范知识、历史知识、情境知识等。在本文中,我们对采用不同进化策略的文化算法进行了比较;第一种实现了历史知识,第二种考虑了情境知识,第三种实现了规范知识。这些文化算法应用于双目标无容量设施选址问题(BOUFLP),即著名的无容量设施选址问题的双目标版本。据我们所知,只有少数文章将进化多目标算法应用于BOUFLP,而且这些文章都没有关注进化策略对算法性能的影响。我们的双目标文化算法,称为BOCA,与其他著名的进化双目标优化算法(如PAES和NSGA-II)相比,有了显著的改进。本研究中考虑的相互冲突的目标函数是成本最小化和覆盖最大化。使用超体积S指标对各算法得到的解进行比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc52/4165330/17565b015aa4/TSWJ2014-745921.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验