Suppr超能文献

利用熵指数预测神经保护化合物的多靶点网络以及新型不对称1,2-雷沙吉兰氨基甲酸酯的合成、测定和理论研究

Prediction of multi-target networks of neuroprotective compounds with entropy indices and synthesis, assay, and theoretical study of new asymmetric 1,2-rasagiline carbamates.

作者信息

Romero Durán Francisco J, Alonso Nerea, Caamaño Olga, García-Mera Xerardo, Yañez Matilde, Prado-Prado Francisco J, González-Díaz Humberto

机构信息

Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain.

Department of Pharmacology, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain.

出版信息

Int J Mol Sci. 2014 Sep 24;15(9):17035-64. doi: 10.3390/ijms150917035.

Abstract

In a multi-target complex network, the links (L(ij)) represent the interactions between the drug (d(i)) and the target (t(j)), characterized by different experimental measures (K(i), K(m), IC50, etc.) obtained in pharmacological assays under diverse boundary conditions (c(j)). In this work, we handle Shannon entropy measures for developing a model encompassing a multi-target network of neuroprotective/neurotoxic compounds reported in the CHEMBL database. The model predicts correctly >8300 experimental outcomes with Accuracy, Specificity, and Sensitivity above 80%-90% on training and external validation series. Indeed, the model can calculate different outcomes for >30 experimental measures in >400 different experimental protocolsin relation with >150 molecular and cellular targets on 11 different organisms (including human). Hereafter, we reported by the first time the synthesis, characterization, and experimental assays of a new series of chiral 1,2-rasagiline carbamate derivatives not reported in previous works. The experimental tests included: (1) assay in absence of neurotoxic agents; (2) in the presence of glutamate; and (3) in the presence of H2O2. Lastly, we used the new Assessing Links with Moving Averages (ALMA)-entropy model to predict possible outcomes for the new compounds in a high number of pharmacological tests not carried out experimentally.

摘要

在多靶点复杂网络中,链接(L(ij))代表药物(d(i))与靶点(t(j))之间的相互作用,其特征由在不同边界条件(c(j))下的药理实验中获得的不同实验测量值(K(i)、K(m)、IC50等)来表征。在这项工作中,我们运用香农熵测度来开发一个模型,该模型涵盖了CHEMBL数据库中报道的神经保护/神经毒性化合物的多靶点网络。该模型在训练和外部验证系列中正确预测了超过8300个实验结果,准确率、特异性和灵敏度均高于80%-90%。实际上,该模型能够针对11种不同生物体(包括人类)中与超过150个分子和细胞靶点相关的400多种不同实验方案中的30多种实验测量值计算不同结果。在此,我们首次报道了一系列此前未在文献中报道的新型手性1,2-雷沙吉兰氨基甲酸酯衍生物的合成、表征及实验测定。实验测试包括:(1)在无神经毒性剂的情况下进行测定;(2)在有谷氨酸存在的情况下进行测定;(3)在有过氧化氢存在的情况下进行测定。最后,我们使用新的移动平均评估链接(ALMA)-熵模型来预测大量未进行实验的药理测试中这些新化合物的可能结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b53e/4200850/1ae5a9b7e73f/ijms-15-17035-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验