Department of Applied Chemistry, Yantai University, Yantai 264005, People's Republic of China.
Bioorg Med Chem. 2013 Apr 1;21(7):1870-9. doi: 10.1016/j.bmc.2013.01.035. Epub 2013 Jan 27.
The interest on computational techniques for the discovery of neuroprotective drugs has increased due to recent fail of important clinical trials. In fact, there is a huge amount of data accumulated in public databases like CHEMBL with respect to structurally heterogeneous series of drugs, multiple assays, drug targets, and model organisms. However, there are no reports of multi-target or multiplexing Quantitative Structure-Property Relationships (mt-QSAR/mx-QSAR) models of these multiplexing assay outcomes reported in CHEMBL for neurotoxicity/neuroprotective effects of drugs. Accordingly, in this paper we develop the first mx-QSAR model for multiplexing assays of neurotoxicity/neuroprotective effects of drugs. We used the method TOPS-MODE to calculate the structural parameters of drugs. The best model found correctly classified 4393 out of 4915 total cases in both training and validation. This is representative of overall train and validation Accuracy, Sensitivity, and Specificity values near to 90%, 98%, and 80%, respectively. This dataset includes multiplexing assay endpoints of 2217 compounds. Every one compound was assayed in at least one out of 338 assays, which involved 148 molecular or cellular targets and 35 standard type measures in 11 model organisms (including human). The second aim of this work is the exemplification of the use of the new mx-QSAR model with a practical case of study. To this end, we obtained again by organic synthesis and reported, by the first time, experimental assays of the new 1,3-rasagiline derivatives 3 different tests: assay (1) in absence of neurotoxic agents, (2) in the presence of glutamate, and (3) in the presence of H2O2. The higher neuroprotective effects found for each one of these assays were for the stereoisomers of compound 7: compound 7b with protection=23.4% in assay (1) and protection=15.2% in assay (2); and for compound 7a with protection=46.2% in assay (3). Interestingly, almost all compounds show protection values >10% in assay (3) but not in the other 2 assays. After that, we used the mx-QSAR model to predict the more probable response of the new compounds in 559 unique pharmacological tests not carried out experimentally. The results obtained are very significant because they complement the pharmacological studies of these promising rasagiline derivatives. This work paves the way for further developments in the multi-target/multiplexing screening of large libraries of compounds potentially useful in the treatment of neurodegenerative diseases.
由于最近一些重要的临床试验失败,计算技术在神经保护药物发现中的应用受到了越来越多的关注。事实上, CHEMBL 等公共数据库中积累了大量关于结构异构系列药物、多种测定方法、药物靶点和模型生物的数据。然而,目前尚无报告显示 CHEMBL 中针对药物的神经毒性/神经保护作用的这些多重测定方法的结果有多靶或多重定量构效关系(mt-QSAR/mx-QSAR)模型。因此,在本文中,我们开发了第一个用于药物的神经毒性/神经保护作用的多重测定方法的 mx-QSAR 模型。我们使用 TOPS-MODE 方法计算药物的结构参数。发现的最佳模型正确地将训练和验证中的 4915 个总病例中的 4393 个进行了分类。这代表着训练和验证的总准确率、灵敏度和特异性值分别接近 90%、98%和 80%。该数据集包括 2217 种化合物的多重测定终点。每种化合物至少在 338 种测定方法中的一种中进行了测定,这些测定方法涉及 148 种分子或细胞靶点和 11 种模型生物(包括人类)中的 35 种标准测量方法。这项工作的第二个目的是通过一个实际案例研究来说明新的 mx-QSAR 模型的应用。为此,我们再次通过有机合成获得了新的 1,3-rasagiline 衍生物的实验测定结果,并首次报道了 3 种不同的测试:(1)在没有神经毒性剂的情况下进行的测定,(2)在谷氨酸存在下进行的测定,和(3)在 H2O2 存在下进行的测定。在这些测定中,每种测定的立体异构体化合物 7 的神经保护作用更高:化合物 7b 的保护率为 23.4%(在测定(1)中)和保护率为 15.2%(在测定(2)中);化合物 7a 的保护率为 46.2%(在测定(3)中)。有趣的是,几乎所有化合物在测定(3)中都显示出>10%的保护值,但在其他 2 种测定中则没有。之后,我们使用 mx-QSAR 模型预测了 559 种未进行实验的独特药理学测试中新型化合物更可能的反应。得到的结果非常显著,因为它们补充了这些有前途的 rasagiline 衍生物的药理学研究。这项工作为进一步开发针对具有治疗神经退行性疾病潜力的大型化合物库的多靶/多重筛选铺平了道路。