Suppr超能文献

利用酿酒酵母抗性突变体的下一代测序技术确认苯菌灵和雷帕霉素的细胞靶点。

Confirmation of the cellular targets of benomyl and rapamycin using next-generation sequencing of resistant mutants in S. cerevisiae.

作者信息

Wride Dustin A, Pourmand Nader, Bray Walter M, Kosarchuk Jacob J, Nisam Sean C, Quan Tiffani K, Berkeley Ray F, Katzman Sol, Hartzog Grant A, Dobkin Carlos E, Scott Lokey R

机构信息

Department of Chemistry and Biochemistry, University of California, Santa Cruz, USA.

出版信息

Mol Biosyst. 2014 Dec;10(12):3179-87. doi: 10.1039/c4mb00146j.

Abstract

Investigating the mechanisms of action (MOAs) of bioactive compounds and the deconvolution of their cellular targets is an important and challenging undertaking. Drug resistance in model organisms such as S. cerevisiae has long been a means for discovering drug targets and MOAs. Strains are selected for resistance to a drug of interest, and the resistance mutations can often be mapped to the drug's molecular target using classical genetic techniques. Here we demonstrate the use of next generation sequencing (NGS) to identify mutations that confer resistance to two well-characterized drugs, benomyl and rapamycin. Applying NGS to pools of drug-resistant mutants, we develop a simple system for ranking single nucleotide polymorphisms (SNPs) based on their prevalence in the pool, and for ranking genes based on the number of SNPs that they contain. We clearly identified the known targets of benomyl (TUB2) and rapamycin (FPR1) as the highest-ranking genes under this system. The highest-ranking SNPs corresponded to specific amino acid changes that are known to confer resistance to these drugs. We also found that by screening in a pdr1Δ null background strain that lacks a transcription factor regulating the expression of drug efflux pumps, and by pre-screening mutants in a panel of unrelated anti-fungal agents, we were able to mitigate against the selection of multi-drug resistance (MDR) mutants. We call our approach "Mutagenesis to Uncover Targets by deep Sequencing", or "MUTseq", and show through this proof-of-concept study its potential utility in characterizing MOAs and targets of novel compounds.

摘要

研究生物活性化合物的作用机制及其细胞靶点的反卷积是一项重要且具有挑战性的工作。长期以来,酿酒酵母等模式生物中的耐药性一直是发现药物靶点和作用机制的一种手段。选择对感兴趣的药物具有抗性的菌株,通常可以使用经典遗传技术将抗性突变定位到药物的分子靶点。在这里,我们展示了使用下一代测序(NGS)来鉴定赋予对两种特征明确的药物(苯菌灵和雷帕霉素)抗性的突变。将NGS应用于耐药突变体库,我们开发了一个简单的系统,用于根据单核苷酸多态性(SNP)在库中的流行程度对其进行排名,并根据基因所含SNP的数量对基因进行排名。在这个系统下,我们明确将苯菌灵的已知靶点(TUB2)和雷帕霉素的已知靶点(FPR1)确定为排名最高的基因。排名最高的SNP对应于已知赋予对这些药物抗性的特定氨基酸变化。我们还发现,通过在缺乏调节药物外排泵表达的转录因子的pdr1Δ缺失背景菌株中进行筛选,并通过在一组不相关的抗真菌剂中对突变体进行预筛选,我们能够减少多药耐药(MDR)突变体的选择。我们将我们的方法称为“通过深度测序诱变揭示靶点”,或“MUTseq”,并通过这项概念验证研究展示了其在表征新型化合物的作用机制和靶点方面的潜在效用。

相似文献

5
Evolutionary engineering and molecular characterization of a caffeine-resistant Saccharomyces cerevisiae strain.
World J Microbiol Biotechnol. 2019 Nov 14;35(12):183. doi: 10.1007/s11274-019-2762-2.
6
Salicylic acid resistance is conferred by a novel YRR1 mutation in Saccharomyces cerevisiae.
Biochem Biophys Res Commun. 2013 Apr 26;434(1):42-7. doi: 10.1016/j.bbrc.2013.03.069. Epub 2013 Mar 30.

引用本文的文献

2
Experimental evolution of for caffeine tolerance alters multidrug resistance and TOR signaling pathways.
bioRxiv. 2024 Apr 29:2024.04.28.591555. doi: 10.1101/2024.04.28.591555.
3
Robust microtubule dynamics facilitate low-tension kinetochore detachment in metaphase.
J Cell Biol. 2023 Aug 7;222(8). doi: 10.1083/jcb.202202085. Epub 2023 May 11.
4
Chemical reactivity, molecular electrostatic potential and in-silico analysis on benzimidazole fungicide benomyl.
Heliyon. 2022 Nov 5;8(11):e11417. doi: 10.1016/j.heliyon.2022.e11417. eCollection 2022 Nov.
5
Next-Generation Sequencing Applications for the Study of Fungal Pathogens.
Microorganisms. 2022 Sep 21;10(10):1882. doi: 10.3390/microorganisms10101882.
9
Computer-Aided Drug Discovery in Plant Pathology.
Plant Pathol J. 2017 Dec;33(6):529-542. doi: 10.5423/PPJ.RW.04.2017.0084. Epub 2017 Dec 1.
10
Genomic sequencing-based mutational enrichment analysis identifies motility genes in a genetically intractable gut microbe.
Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):14127-14132. doi: 10.1073/pnas.1612753113. Epub 2016 Nov 23.

本文引用的文献

1
A functional variomics tool for discovering drug-resistance genes and drug targets.
Cell Rep. 2013 Feb 21;3(2):577-85. doi: 10.1016/j.celrep.2013.01.019. Epub 2013 Feb 14.
2
Whole-Genome Profiling of a Novel Mutagenesis Technique Using Proofreading-Deficient DNA Polymerase δ.
Int J Evol Biol. 2012;2012:860797. doi: 10.1155/2012/860797. Epub 2012 May 22.
3
Global analysis of the evolution and mechanism of echinocandin resistance in Candida glabrata.
PLoS Pathog. 2012;8(5):e1002718. doi: 10.1371/journal.ppat.1002718. Epub 2012 May 17.
4
Fast gapped-read alignment with Bowtie 2.
Nat Methods. 2012 Mar 4;9(4):357-9. doi: 10.1038/nmeth.1923.
5
Using transcriptome sequencing to identify mechanisms of drug action and resistance.
Nat Chem Biol. 2012 Feb 12;8(3):235-7. doi: 10.1038/nchembio.779.
6
How were new medicines discovered?
Nat Rev Drug Discov. 2011 Jun 24;10(7):507-19. doi: 10.1038/nrd3480.
7
A framework for variation discovery and genotyping using next-generation DNA sequencing data.
Nat Genet. 2011 May;43(5):491-8. doi: 10.1038/ng.806. Epub 2011 Apr 10.
9
The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data.
Genome Res. 2010 Sep;20(9):1297-303. doi: 10.1101/gr.107524.110. Epub 2010 Jul 19.
10
HALO384: a halo-based potency prediction algorithm for high-throughput detection of antimicrobial agents.
J Biomol Screen. 2010 Feb;15(2):196-205. doi: 10.1177/1087057109355060. Epub 2010 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验