Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA.
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210-1173, USA.
Science. 2014 Sep 26;345(6204):1596-8. doi: 10.1126/science.1257158.
Ozonolysis of alkenes, an important nonphotolytic source of hydroxyl (OH) radicals in the troposphere, proceeds through energized Criegee intermediates that undergo unimolecular decay to produce OH radicals. Here, we used infrared (IR) activation of cold CH3CHOO Criegee intermediates to drive hydrogen transfer from the methyl group to the terminal oxygen, followed by dissociation to OH radicals. State-selective excitation of CH3CHOO in the CH stretch overtone region combined with sensitive OH detection revealed the IR spectrum of CH3CHOO, effective barrier height for the critical hydrogen transfer step, and rapid decay dynamics to OH products. Complementary theory provides insights on the IR overtone spectrum, as well as vibrational excitations, structural changes, and energy required to move from the minimum-energy configuration of CH3CHOO to the transition state for the hydrogen transfer reaction.
烯烃的臭氧化反应是对流层中羟基 (OH) 自由基的重要非光解源,它通过激发态的 Criegee 中间体进行单分子衰变,产生 OH 自由基。在这里,我们使用冷 CH3CHOO Criegee 中间体的红外 (IR) 激活来驱动从甲基到末端氧的氢转移,然后解离成 OH 自由基。CH3CHOO 在 CH 伸缩泛频区域的态选择性激发与敏感的 OH 检测相结合,揭示了 CH3CHOO 的 IR 光谱、关键氢转移步骤的有效势垒高度以及快速衰减动力学到 OH 产物。补充理论提供了对 IR 泛频光谱的深入了解,以及对振动激发、结构变化和从 CH3CHOO 的最低能量构型移动到氢转移反应过渡态所需的能量的深入了解。