Harvey Sophie R, Porrini Massimiliano, Konijnenberg Albert, Clarke David J, Tyler Robert C, Langridge-Smith Patrick R R, MacPhee Cait E, Volkman Brian F, Barran Perdita E
School of Chemistry and ∥School of Physics and Astronomy, University of Edinburgh , West Mains Road, Edinburgh EH9 3JJ, United Kingdom.
J Phys Chem B. 2014 Oct 30;118(43):12348-59. doi: 10.1021/jp504997k. Epub 2014 Oct 20.
A mass spectrometer provides an ideal laboratory to probe the structure and stability of isolated protein ions. Interrogation of each discrete mass/charge-separated species enables the determination of the intrinsic stability of a protein fold, gaining snapshots of unfolding pathways. In solution, the metamorphic protein lymphotactin (Ltn) exists in equilibrium between two distinct conformations, a monomeric (Ltn10) and a dimeric (Ltn40) fold. Here, we use electron capture dissociation (ECD) and drift tube ion mobility-mass spectrometry (DT IM-MS) to analyze both forms and use molecular dynamics (MD) to consider how the solution fold alters in a solvent-free environment. DT IM-MS reveals significant conformational flexibility for the monomer, while the dimer appears more conformationally restricted. These findings are supported by MD calculations, which reveal how salt bridges stabilize the conformers in vacuo. Following ECD experiments, a distinctive fragmentation pattern is obtained for both the monomer and dimer. Monomer fragmentation becomes more pronounced with increasing charge state especially in the disordered regions and C-terminal α-helix in the solution fold. Lower levels of fragmentation are seen in the β-sheet regions and in regions that contain salt bridges, identified by MD simulations. The lowest charge state of the dimer for which we obtain ECD data (D+9H) exhibits extensive fragmentation with no relationship to the solution fold and has a smaller collision cross section (CCS) than charge states 10-13+, suggesting a "collapsed" encounter complex. Other charge states of the dimer, as for the monomer, are resistant to fragmentation in regions of β-sheets in the solution fold. This study provides evidence for preservation and loss of global fold and secondary structural elements, providing a tantalizing glimpse into the power of the emerging field of native top-down mass spectrometry.
质谱仪为探究孤立蛋白质离子的结构和稳定性提供了一个理想的实验室。对每个离散的质荷比分离的物种进行分析,能够确定蛋白质折叠的内在稳定性,获取展开途径的瞬间图像。在溶液中,变质蛋白淋巴细胞趋化因子(Ltn)存在于两种不同构象之间的平衡状态,即单体(Ltn10)和二聚体(Ltn40)折叠。在这里,我们使用电子捕获解离(ECD)和漂移管离子淌度-质谱(DT IM-MS)来分析这两种形式,并使用分子动力学(MD)来考虑溶液折叠在无溶剂环境中是如何变化的。DT IM-MS揭示了单体具有显著的构象灵活性,而二聚体的构象似乎受到更多限制。这些发现得到了MD计算的支持,MD计算揭示了盐桥如何在真空中稳定构象体。在ECD实验之后,单体和二聚体都获得了独特的碎片模式。随着电荷态增加,单体碎片变得更加明显,特别是在溶液折叠中的无序区域和C端α螺旋中。在β折叠区域和MD模拟确定的包含盐桥的区域中,碎片水平较低。我们获得ECD数据的二聚体的最低电荷态(D + 9H)表现出广泛的碎片化,与溶液折叠无关,并且其碰撞截面(CCS)比10 - 13 +电荷态小,表明存在“塌陷”的碰撞复合物。与单体一样,二聚体的其他电荷态在溶液折叠的β折叠区域中对碎片化具有抗性。这项研究为整体折叠和二级结构元件的保留和丢失提供了证据,让我们得以一窥新兴的天然自上而下质谱领域的强大力量。