Shaw Jared B, Harvey Sophie R, Du Chen, Xu Zhixin, Edgington Regina M, Olmedillas Eduardo, Saphire Erica Ollmann, Wysocki Vicki H
Department of Chemistry, University of Nebraska, Lincoln, NE 68588.
Native Mass Spectrometry Guided Structural Biology Center, Ohio State University, Columbus, OH 43210.
bioRxiv. 2024 Jul 17:2024.03.07.583498. doi: 10.1101/2024.03.07.583498.
We illustrate the utility of native mass spectrometry (nMS) combined with a fast, tunable gas-phase charge reduction, electron capture charge reduction (ECCR), for the characterization of protein complex topology and glycoprotein heterogeneity. ECCR efficiently reduces the charge states of tetradecameric GroEL, illustrating Orbitrap measurements to greater than 100,000 . For pentameric C-reactive protein and tetradecameric GroEL, our novel device combining ECCR with surface induced dissociation (SID) reduces the charge states and yields more topologically informative fragmentation. This is the first demonstration that ECCR yields more native-like SID fragmentation. ECCR also significantly improved mass and glycan heterogeneity measurements of heavily glycosylated SARS-CoV-2 spike protein trimer and thyroglobulin dimer. Protein glycosylation is important for structural and functional properties and plays essential roles in many biological processes. The immense heterogeneity in glycosylation sites and glycan structure poses significant analytical challenges that hinder a mechanistic understanding of the biological role of glycosylation. Without ECCR, average mass determination of glycoprotein complexes is available only through charge detection mass spectrometry or mass photometry. With narrow selection windows followed by ECCR, multiple glycoform values are apparent, providing quick global glycoform profiling and providing a future path for glycan localization on individual intact glycoforms.
我们展示了采用快速、可调谐的气相电荷降低方法——电子捕获电荷降低(ECCR)的基质辅助激光解吸电离质谱(nMS)在蛋白质复合物拓扑结构表征和糖蛋白异质性分析方面的应用。ECCR有效地降低了十四聚体GroEL的电荷态,使Orbitrap测量精度超过100,000。对于五聚体C反应蛋白和十四聚体GroEL,我们将ECCR与表面诱导解离(SID)相结合的新型装置降低了电荷态,并产生了更多拓扑结构信息丰富的碎片。这是首次证明ECCR能产生更接近天然状态的SID碎片。ECCR还显著改善了高度糖基化的新冠病毒刺突蛋白三聚体和甲状腺球蛋白二聚体的质量和聚糖异质性测量。蛋白质糖基化对于结构和功能特性很重要,并且在许多生物过程中发挥着关键作用。糖基化位点和聚糖结构的巨大异质性带来了重大的分析挑战,阻碍了对糖基化生物学作用的机制理解。没有ECCR,糖蛋白复合物的平均质量测定只能通过电荷检测质谱法或质量光度法进行。通过ECCR后的窄选择窗口,可以明显看到多个糖型值,提供快速的整体糖型分析,并为单个完整糖型上的聚糖定位提供了未来的途径。