Suppr超能文献

阿尔茨海默病的结构成像生物标志物:预测疾病进展

Structural imaging biomarkers of Alzheimer's disease: predicting disease progression.

作者信息

Eskildsen Simon F, Coupé Pierrick, Fonov Vladimir S, Pruessner Jens C, Collins D Louis

机构信息

Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark.

Laboratoire Bordelais de Recherche en Informatique, Unité Mixte de Recherche CNRS (UMR 5800), PICTURA Group, Bordeaux, France.

出版信息

Neurobiol Aging. 2015 Jan;36 Suppl 1:S23-31. doi: 10.1016/j.neurobiolaging.2014.04.034. Epub 2014 Aug 28.

Abstract

Optimized magnetic resonance imaging (MRI)-based biomarkers of Alzheimer's disease (AD) may allow earlier detection and refined prediction of the disease. In addition, they could serve as valuable tools when designing therapeutic studies of individuals at risk of AD. In this study, we combine (1) a novel method for grading medial temporal lobe structures with (2) robust cortical thickness measurements to predict AD among subjects with mild cognitive impairment (MCI) from a single T1-weighted MRI scan. Using AD and cognitively normal individuals, we generate a set of features potentially discriminating between MCI subjects who convert to AD and those who remain stable over a period of 3 years. Using mutual information-based feature selection, we identify 5 key features optimizing the classification of MCI converters. These features are the left and right hippocampi gradings and cortical thicknesses of the left precuneus, left superior temporal sulcus, and right anterior part of the parahippocampal gyrus. We show that these features are highly stable in cross-validation and enable a prediction accuracy of 72% using a simple linear discriminant classifier, the highest prediction accuracy obtained on the baseline Alzheimer's Disease Neuroimaging Initiative first phase cohort to date. The proposed structural features are consistent with Braak stages and previously reported atrophic patterns in AD and are easy to transfer to new cohorts and to clinical practice.

摘要

优化的基于磁共振成像(MRI)的阿尔茨海默病(AD)生物标志物可能有助于更早地检测该疾病并进行更精确的预测。此外,在设计针对有AD风险个体的治疗研究时,它们可作为有价值的工具。在本研究中,我们将(1)一种对内侧颞叶结构进行分级的新方法与(2)稳健的皮质厚度测量相结合,以从单次T1加权MRI扫描预测轻度认知障碍(MCI)受试者中的AD。利用AD患者和认知正常个体,我们生成了一组特征,这些特征可能区分在3年期间转化为AD的MCI受试者和保持稳定的MCI受试者。通过基于互信息的特征选择,我们确定了5个优化MCI转化者分类的关键特征。这些特征是左侧和右侧海马分级以及左侧楔前叶、左侧颞上沟和右侧海马旁回前部的皮质厚度。我们表明,这些特征在交叉验证中高度稳定,使用简单的线性判别分类器可实现72%的预测准确率,这是迄今为止在阿尔茨海默病神经影像倡议第一阶段队列基线数据上获得的最高预测准确率。所提出的结构特征与Braak分期一致,并且与先前报道的AD萎缩模式相符,易于应用于新的队列和临床实践。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验