Suppr超能文献

通过可解释人工智能利用来自MRI的多种脑测量指标进行生物标志物研究以用于阿尔茨海默病分类

Biomarker Investigation Using Multiple Brain Measures from MRI Through Explainable Artificial Intelligence in Alzheimer's Disease Classification.

作者信息

Coluzzi Davide, Bordin Valentina, Rivolta Massimo W, Fortel Igor, Zhan Liang, Leow Alex, Baselli Giuseppe

机构信息

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy.

Dipartimento di Informatica, Università degli Studi di Milano, 20133 Milan, Italy.

出版信息

Bioengineering (Basel). 2025 Jan 17;12(1):82. doi: 10.3390/bioengineering12010082.

Abstract

As the leading cause of dementia worldwide, Alzheimer's Disease (AD) has prompted significant interest in developing Deep Learning (DL) approaches for its classification. However, it currently remains unclear whether these models rely on established biological indicators. This work compares a novel DL model using structural connectivity (namely, BC-GCN-SE adapted from functional connectivity tasks) with an established model using structural magnetic resonance imaging (MRI) scans (namely, ResNet18). Unlike most studies primarily focusing on performance, our work places explainability at the forefront. Specifically, we define a novel Explainable Artificial Intelligence (XAI) metric, based on gradient-weighted class activation mapping. Its aim is quantitatively measuring how effectively these models fare against established AD biomarkers in their decision-making. The XAI assessment was conducted across 132 brain parcels. Results were compared to AD-relevant regions to measure adherence to domain knowledge. Then, differences in explainability patterns between the two models were assessed to explore the insights offered by each piece of data (i.e., MRI vs. connectivity). Classification performance was satisfactory in terms of both the median true positive (ResNet18: 0.817, BC-GCN-SE: 0.703) and true negative rates (ResNet18: 0.816; BC-GCN-SE: 0.738). Statistical tests ( < 0.05) and ranking of the 15% most relevant parcels revealed the involvement of target areas: the medial temporal lobe for ResNet18 and the default mode network for BC-GCN-SE. Additionally, our findings suggest that different imaging modalities provide complementary information to DL models. This lays the foundation for bioengineering advancements in developing more comprehensive and trustworthy DL models, potentially enhancing their applicability as diagnostic support tools for neurodegenerative diseases.

摘要

作为全球痴呆症的主要病因,阿尔茨海默病(AD)引发了人们对开发深度学习(DL)方法进行分类的浓厚兴趣。然而,目前尚不清楚这些模型是否依赖既定的生物学指标。这项工作将一种使用结构连通性的新型DL模型(即从功能连通性任务改编而来的BC-GCN-SE)与一种使用结构磁共振成像(MRI)扫描的既定模型(即ResNet18)进行了比较。与大多数主要关注性能的研究不同,我们的工作将可解释性置于首位。具体而言,我们基于梯度加权类激活映射定义了一种新型的可解释人工智能(XAI)指标。其目的是定量衡量这些模型在决策过程中相对于既定AD生物标志物的表现如何。XAI评估在132个脑区进行。将结果与AD相关区域进行比较,以衡量对领域知识的遵循情况。然后,评估两个模型之间可解释性模式的差异,以探索每条数据(即MRI与连通性)所提供的见解。就中位真阳性率(ResNet18:0.817,BC-GCN-SE:0.703)和真阴性率(ResNet18:0.816;BC-GCN-SE:0.738)而言,分类性能令人满意。统计检验(<0.05)和对15%最相关脑区的排名揭示了目标区域的参与情况:ResNet18的内侧颞叶和BC-GCN-SE的默认模式网络。此外,我们的研究结果表明,不同的成像方式为DL模型提供了互补信息。这为开发更全面、更可靠的DL模型的生物工程进展奠定了基础,有可能提高其作为神经退行性疾病诊断支持工具的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d785/11763248/5616cb7633ab/bioengineering-12-00082-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验