Suppr超能文献

等变性允许在分析汇总神经影像数据集时处理多个干扰变量。

Equivariance Allows Handling Multiple Nuisance Variables When Analyzing Pooled Neuroimaging Datasets.

作者信息

Lokhande Vishnu Suresh, Ravi Sathya N, Chakraborty Rudrasis, Singh Vikas

机构信息

University of Wisconsin-Madison.

University of Illinois at Chicago.

出版信息

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2022 Jun;2022:10422-10431. doi: 10.1109/cvpr52688.2022.01018. Epub 2022 Sep 27.

Abstract

Pooling multiple neuroimaging datasets across institutions often enables improvements in statistical power when evaluating associations (e.g., between risk factors and disease outcomes) that may otherwise be too weak to detect. When there is only a single source of variability (e.g., different scanners), domain adaptation and matching the distributions of representations may suffice in many scenarios. But in the presence of more than one nuisance variable which concurrently influence the measurements, pooling datasets poses unique challenges, e.g., variations in the data can come from both the acquisition method as well as the demographics of participants (gender, age). Invariant representation learning, by itself, is ill-suited to fully model the data generation process. In this paper, we show how bringing recent results on equivariant representation learning (for studying symmetries in neural networks) instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution. In particular, we demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples. Our code is available on https://github.com/vsingh-group/DatasetPooling.

摘要

跨机构合并多个神经影像数据集,在评估关联(例如,风险因素与疾病结果之间的关联)时,通常能够提高统计效力,否则这些关联可能太弱而无法检测到。当只有单一的变异性来源(例如,不同的扫描仪)时,在许多情况下,域适应和匹配表示的分布可能就足够了。但在存在多个同时影响测量的干扰变量的情况下,合并数据集带来了独特的挑战,例如,数据中的变化可能来自采集方法以及参与者的人口统计学特征(性别、年龄)。不变表示学习本身并不适合对数据生成过程进行全面建模。在本文中,我们展示了如何将基于结构化空间实例化的等变表示学习(用于研究神经网络中的对称性)的最新成果与因果推断的经典结果的简单应用相结合,从而提供一种有效的实际解决方案。特别是,我们展示了我们的模型如何在某些假设下处理多个干扰变量,并能够在否则需要去除大部分样本的情况下对合并的科学数据集进行分析。我们的代码可在https://github.com/vsingh-group/DatasetPooling上获取。

相似文献

1
Equivariance Allows Handling Multiple Nuisance Variables When Analyzing Pooled Neuroimaging Datasets.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2022 Jun;2022:10422-10431. doi: 10.1109/cvpr52688.2022.01018. Epub 2022 Sep 27.
4
Detect and correct bias in multi-site neuroimaging datasets.
Med Image Anal. 2021 Jan;67:101879. doi: 10.1016/j.media.2020.101879. Epub 2020 Oct 21.
5
Rotation equivariant and invariant neural networks for microscopy image analysis.
Bioinformatics. 2019 Jul 15;35(14):i530-i537. doi: 10.1093/bioinformatics/btz353.
6
Compositionally Equivariant Representation Learning.
IEEE Trans Med Imaging. 2024 Jun;43(6):2169-2179. doi: 10.1109/TMI.2024.3358955. Epub 2024 Jun 3.
7
Lorentz group equivariant autoencoders.
Eur Phys J C Part Fields. 2023;83(6):485. doi: 10.1140/epjc/s10052-023-11633-5. Epub 2023 Jun 9.
8
EEG-DG: A Multi-Source Domain Generalization Framework for Motor Imagery EEG Classification.
IEEE J Biomed Health Inform. 2025 Apr;29(4):2484-2495. doi: 10.1109/JBHI.2024.3431230. Epub 2025 Apr 4.
9
Multi-Source Data Integration for Segmentation of Unannotated MRI Images.
IEEE J Biomed Health Inform. 2025 Aug;29(8):5405-5412. doi: 10.1109/JBHI.2024.3422250.

引用本文的文献

1
On the Versatile Uses of Partial Distance Correlation in Deep Learning.
Comput Vis ECCV. 2022 Oct;13686:327-346. doi: 10.1007/978-3-031-19809-0_19. Epub 2022 Nov 1.

本文引用的文献

1
Scaling Recurrent Models via Orthogonal Approximations in Tensor Trains.
Proc IEEE Int Conf Comput Vis. 2019 Oct-Nov;2019:10570-10578. doi: 10.1109/iccv.2019.01067.
2
Learning Invariant Representations using Inverse Contrastive Loss.
Proc AAAI Conf Artif Intell. 2021 Feb;35(8):6582-6591. Epub 2021 May 18.
3
Sequence of Alzheimer disease biomarker changes in cognitively normal adults: A cross-sectional study.
Neurology. 2020 Dec 8;95(23):e3104-e3116. doi: 10.1212/WNL.0000000000010747. Epub 2020 Sep 1.
4
Causality matters in medical imaging.
Nat Commun. 2020 Jul 22;11(1):3673. doi: 10.1038/s41467-020-17478-w.
6
ATN profiles among cognitively normal individuals and longitudinal cognitive outcomes.
Neurology. 2019 Apr 2;92(14):e1567-e1579. doi: 10.1212/WNL.0000000000007248. Epub 2019 Mar 6.
7
Statistical tests and identifiability conditions for pooling and analyzing multisite datasets.
Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):1481-1486. doi: 10.1073/pnas.1719747115. Epub 2018 Jan 31.
8
Harmonization of multi-site diffusion tensor imaging data.
Neuroimage. 2017 Nov 1;161:149-170. doi: 10.1016/j.neuroimage.2017.08.047. Epub 2017 Aug 18.
9
On the path to 2025: understanding the Alzheimer's disease continuum.
Alzheimers Res Ther. 2017 Aug 9;9(1):60. doi: 10.1186/s13195-017-0283-5.
10
Causal inference and the data-fusion problem.
Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7345-52. doi: 10.1073/pnas.1510507113.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验