Lokhande Vishnu Suresh, Ravi Sathya N, Chakraborty Rudrasis, Singh Vikas
University of Wisconsin-Madison.
University of Illinois at Chicago.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2022 Jun;2022:10422-10431. doi: 10.1109/cvpr52688.2022.01018. Epub 2022 Sep 27.
Pooling multiple neuroimaging datasets across institutions often enables improvements in statistical power when evaluating associations (e.g., between risk factors and disease outcomes) that may otherwise be too weak to detect. When there is only a single source of variability (e.g., different scanners), domain adaptation and matching the distributions of representations may suffice in many scenarios. But in the presence of more than one nuisance variable which concurrently influence the measurements, pooling datasets poses unique challenges, e.g., variations in the data can come from both the acquisition method as well as the demographics of participants (gender, age). Invariant representation learning, by itself, is ill-suited to fully model the data generation process. In this paper, we show how bringing recent results on equivariant representation learning (for studying symmetries in neural networks) instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution. In particular, we demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples. Our code is available on https://github.com/vsingh-group/DatasetPooling.
跨机构合并多个神经影像数据集,在评估关联(例如,风险因素与疾病结果之间的关联)时,通常能够提高统计效力,否则这些关联可能太弱而无法检测到。当只有单一的变异性来源(例如,不同的扫描仪)时,在许多情况下,域适应和匹配表示的分布可能就足够了。但在存在多个同时影响测量的干扰变量的情况下,合并数据集带来了独特的挑战,例如,数据中的变化可能来自采集方法以及参与者的人口统计学特征(性别、年龄)。不变表示学习本身并不适合对数据生成过程进行全面建模。在本文中,我们展示了如何将基于结构化空间实例化的等变表示学习(用于研究神经网络中的对称性)的最新成果与因果推断的经典结果的简单应用相结合,从而提供一种有效的实际解决方案。特别是,我们展示了我们的模型如何在某些假设下处理多个干扰变量,并能够在否则需要去除大部分样本的情况下对合并的科学数据集进行分析。我们的代码可在https://github.com/vsingh-group/DatasetPooling上获取。