Fournier Jean-Baptiste, Rebuffet Etienne, Delage Ludovic, Grijol Romain, Meslet-Cladière Laurence, Rzonca Justyna, Potin Philippe, Michel Gurvan, Czjzek Mirjam, Leblanc Catherine
Sorbonne Universités, UPMC Université Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique, Roscoff, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique, Roscoff, France.
Sorbonne Universités, UPMC Université Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique, Roscoff, France; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique, Roscoff, France
Appl Environ Microbiol. 2014 Dec;80(24):7561-73. doi: 10.1128/AEM.02430-14. Epub 2014 Sep 26.
Vanadium haloperoxidases (VHPO) are key enzymes that oxidize halides and are involved in the biosynthesis of organo-halogens. Until now, only chloroperoxidases (VCPO) and bromoperoxidases (VBPO) have been characterized structurally, mainly from eukaryotic species. Three putative VHPO genes were predicted in the genome of the flavobacterium Zobellia galactanivorans, a marine bacterium associated with macroalgae. In a phylogenetic analysis, these putative bacterial VHPO were closely related to other VHPO from diverse bacterial phyla but clustered independently from eukaryotic algal VBPO and fungal VCPO. Two of these bacterial VHPO, heterogeneously produced in Escherichia coli, were found to be strictly specific for iodide oxidation. The crystal structure of one of these vanadium-dependent iodoperoxidases, Zg-VIPO1, was solved by multiwavelength anomalous diffraction at 1.8 Å, revealing a monomeric structure mainly folded into α-helices. This three-dimensional structure is relatively similar to those of VCPO of the fungus Curvularia inaequalis and of Streptomyces sp. and is superimposable onto the dimeric structure of algal VBPO. Surprisingly, the vanadate binding site of Zg-VIPO1 is strictly conserved with the fungal VCPO active site. Using site-directed mutagenesis, we showed that specific amino acids and the associated hydrogen bonding network around the vanadate center are essential for the catalytic properties and also the iodide specificity of Zg-VIPO1. Altogether, phylogeny and structure-function data support the finding that iodoperoxidase activities evolved independently in bacterial and algal lineages, and this sheds light on the evolution of the VHPO enzyme family.
钒卤过氧化物酶(VHPO)是氧化卤化物并参与有机卤素生物合成的关键酶。到目前为止,仅对主要来自真核生物物种的氯过氧化物酶(VCPO)和溴过氧化物酶(VBPO)进行了结构表征。在与大型藻类相关的海洋细菌——食半乳聚糖嗜绳菌的基因组中预测到了三个假定的VHPO基因。在系统发育分析中,这些假定的细菌VHPO与来自不同细菌门的其他VHPO密切相关,但与真核藻类VBPO和真菌VCPO独立聚类。在大肠杆菌中异源产生的其中两种细菌VHPO被发现对碘化物氧化具有严格的特异性。通过1.8 Å的多波长反常衍射解析了其中一种钒依赖性碘过氧化物酶Zg-VIPO1的晶体结构,揭示了一种主要折叠成α螺旋的单体结构。这种三维结构与不等弯孢霉菌和链霉菌属的VCPO的结构相对相似,并且可以叠加到藻类VBPO的二聚体结构上。令人惊讶的是,Zg-VIPO1的钒酸盐结合位点与真菌VCPO活性位点严格保守。使用定点诱变,我们表明钒酸盐中心周围的特定氨基酸和相关氢键网络对于Zg-VIPO1的催化特性以及碘化物特异性至关重要。总体而言,系统发育和结构-功能数据支持了碘过氧化物酶活性在细菌和藻类谱系中独立进化的发现,这为VHPO酶家族的进化提供了线索。