Suppr超能文献

放射性碘的生物地球化学及其在地下水中的含量

Radioiodine Biogeochemistry and Prevalence in Groundwater.

作者信息

Kaplan D I, Denham M E, Zhang S, Yeager C, Xu C, Schwehr K A, Li H P, Ho Y F, Wellman D, Santschi P H

机构信息

Savannah River National Laboratory , Aiken , SC , USA.

Department of Marine Sciences, Texas A&M University , Galveston , TX , USA.

出版信息

Crit Rev Environ Sci Technol. 2014 Oct 18;44(20):2287-2335. doi: 10.1080/10643389.2013.828273.

Abstract

I is commonly either the top or among the top risk drivers, along with Tc, at radiological waste disposal sites and contaminated groundwater sites where nuclear material fabrication or reprocessing has occurred. The risk stems largely from I having a high toxicity, a high bioaccumulation factor (90% of all the body's iodine concentrates in the thyroid), a high inventory at source terms (due to its high fission yield), an extremely long half-life (16M years), and rapid mobility in the subsurface environment. Another important reason that I is a key risk driver is that there is uncertainty regarding its biogeochemical fate and transport in the environment. We typically can define I mass balance and flux at sites, but cannot predict accurately its response to changes in the environment. As a consequence of some of these characteristics, I has a very low drinking water standard, which is set at 1 pCi/L, the lowest of all radionuclides in the Federal Register. Recently, significant advancements have been made in detecting iodine species at ambient groundwater concentrations, defining the nature of the organic matter and iodine bond, and quantifying the role of naturally occurring sediment microbes to promote iodine oxidation and reduction. These recent studies have led to a more mechanistic understanding of radioiodine biogeochemistry. The objective of this review is to describe these advances and to provide a state of the science of radioiodine biogeochemistry relevant to its fate and transport in the terrestrial environment and provide information useful for making decisions regarding the stewardship and remediation of I contaminated sites. As part of this review, knowledge gaps were identified that would significantly advance the goals of basic and applied research programs for accelerating I environmental remediation and reducing uncertainty associated with disposal of I waste. Together the information gained from addressing these knowledge gaps will not alter the observation that I is primarily mobile, but it will likely permit demonstration that the entire I pool in the source term is not moving at the same rate and some may be tightly bound to the sediment, thereby smearing the modeled I peak and reducing maximum calculated risk.

摘要

在曾发生核材料制造或后处理的放射性废物处置场和受污染的地下水场地,碘通常是首要或位列前列的风险驱动因素之一,与锝(Tc)一样。这种风险很大程度上源于碘具有高毒性、高生物累积因子(人体中90%的碘集中在甲状腺)、源项中的高存量(因其高裂变产额)、极长的半衰期(1600万年)以及在地下环境中的快速迁移性。碘成为关键风险驱动因素的另一个重要原因是其在环境中的生物地球化学归宿和迁移存在不确定性。我们通常可以确定场地的碘质量平衡和通量,但无法准确预测其对环境变化的响应。由于这些特性中的一些,碘的饮用水标准非常低,设定为1皮居里/升,这是联邦法规中所有放射性核素中最低的。最近,在检测环境地下水中碘物种的浓度、确定有机物与碘键的性质以及量化天然存在的沉积物微生物促进碘氧化和还原的作用方面取得了重大进展。这些最新研究使人们对放射性碘生物地球化学有了更深入的机制理解。本综述的目的是描述这些进展,并提供与放射性碘在陆地环境中的归宿和迁移相关的生物地球化学科学现状,以及提供有助于就碘污染场地的管理和修复做出决策的信息。作为本综述的一部分,确定了一些知识空白,这些空白将显著推进基础和应用研究项目的目标,以加速碘的环境修复并减少与碘废物处置相关的不确定性。综合从解决这些知识空白中获得的信息不会改变碘主要具有迁移性的观察结果,但可能会证明源项中的整个碘库并非以相同速率移动,有些可能与沉积物紧密结合,从而使模拟的碘峰值变模糊并降低计算出的最大风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d21/4160254/75872ea4b769/best-44-2287-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验