Suppr超能文献

细胞与基质相互作用的新见解:阐明细胞外微环境的不溶性特性如何引导干细胞命运。

Evolving insights in cell-matrix interactions: elucidating how non-soluble properties of the extracellular niche direct stem cell fate.

作者信息

Walters Nick J, Gentleman Eileen

机构信息

Division of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, London WC1X 8LD, UK.

Craniofacial Development & Stem Cell Biology, King's College London, London SE1 9RT, UK.

出版信息

Acta Biomater. 2015 Jan;11:3-16. doi: 10.1016/j.actbio.2014.09.038. Epub 2014 Oct 5.

Abstract

The role of soluble messengers in directing cellular behaviours has been recognized for decades. However, many cellular processes, including adhesion, migration and stem cell differentiation, are also governed by chemical and physical interactions with non-soluble components of the extracellular matrix (ECM). Among other effects, a cell's perception of nanoscale features such as substrate topography and ligand presentation, and its ability to deform the matrix via the generation of cytoskeletal tension play fundamental roles in these cellular processes. As a result, many biomaterials-based tissue engineering and regenerative medicine strategies aim to harness the cell's perception of substrate stiffness and nanoscale features to direct particular behaviours. However, since cell-ECM interactions vary considerably between two-dimensional (2-D) and three-dimensional (3-D) models, understanding their influence over normal and pathological cell responses in 3-D systems that better mimic the in vivo microenvironment is essential to translate such insights efficiently into medical therapies. This review summarizes the key findings in these areas and discusses how insights from 2-D biomaterials are being used to examine cellular behaviours in more complex 3-D hydrogel systems, in which not only matrix stiffness, but also degradability, plays an important role, and in which defining the nanoscale ligand presentation presents an additional challenge.

摘要

可溶性信号分子在指导细胞行为方面的作用已被认识数十年。然而,许多细胞过程,包括黏附、迁移和干细胞分化,也受与细胞外基质(ECM)不溶性成分的化学和物理相互作用的支配。除其他作用外,细胞对诸如底物拓扑结构和配体呈现等纳米级特征的感知,以及其通过产生细胞骨架张力使基质变形的能力,在这些细胞过程中发挥着基本作用。因此,许多基于生物材料的组织工程和再生医学策略旨在利用细胞对底物硬度和纳米级特征的感知来指导特定行为。然而,由于细胞与ECM的相互作用在二维(2-D)和三维(3-D)模型之间有很大差异,了解它们在能更好模拟体内微环境的三维系统中对正常和病理细胞反应的影响,对于将这些见解有效转化为医学治疗至关重要。本综述总结了这些领域的关键发现,并讨论了二维生物材料的见解如何用于研究更复杂的三维水凝胶系统中的细胞行为,在这种系统中,不仅基质硬度,而且可降解性也起着重要作用,并且定义纳米级配体呈现带来了额外挑战。

相似文献

2
Role of substrate biomechanics in controlling (stem) cell fate: Implications in regenerative medicine.
J Tissue Eng Regen Med. 2018 Apr;12(4):1012-1019. doi: 10.1002/term.2586. Epub 2017 Nov 10.
3
Engineering Hydrogel Microenvironments to Recapitulate the Stem Cell Niche.
Annu Rev Biomed Eng. 2018 Jun 4;20:21-47. doi: 10.1146/annurev-bioeng-062117-120954. Epub 2017 Dec 8.
4
Engineering nanoscale stem cell niche: direct stem cell behavior at cell-matrix interface.
Adv Healthc Mater. 2015 Sep 16;4(13):1900-14. doi: 10.1002/adhm.201500351. Epub 2015 Jul 29.
5
Cell sensing of physical properties at the nanoscale: Mechanisms and control of cell adhesion and phenotype.
Acta Biomater. 2016 Jan;30:26-48. doi: 10.1016/j.actbio.2015.11.027. Epub 2015 Nov 17.
6
Control of stem cell fate by physical interactions with the extracellular matrix.
Cell Stem Cell. 2009 Jul 2;5(1):17-26. doi: 10.1016/j.stem.2009.06.016.
7
Glycosaminoglycans in Tissue Engineering: A Review.
Biomolecules. 2020 Dec 29;11(1):29. doi: 10.3390/biom11010029.
8
Stem cell microenvironments--unveiling the secret of how stem cell fate is defined.
Macromol Biosci. 2010 Nov 10;10(11):1302-15. doi: 10.1002/mabi.201000102.
9
Amyloid Fibrils: Versatile Biomaterials for Cell Adhesion and Tissue Engineering Applications.
Biomacromolecules. 2018 Jun 11;19(6):1826-1839. doi: 10.1021/acs.biomac.8b00279. Epub 2018 May 9.
10
Union is strength: matrix elasticity and microenvironmental factors codetermine stem cell differentiation fate.
Cell Tissue Res. 2015 Sep;361(3):657-68. doi: 10.1007/s00441-015-2190-z. Epub 2015 May 9.

引用本文的文献

2
A review of advanced hydrogels for cartilage tissue engineering.
Front Bioeng Biotechnol. 2024 Feb 8;12:1340893. doi: 10.3389/fbioe.2024.1340893. eCollection 2024.
3
Listen to Your Gut: Key Concepts for Bioengineering Advanced Models of the Intestine.
Adv Sci (Weinh). 2024 Feb;11(5):e2302165. doi: 10.1002/advs.202302165. Epub 2023 Nov 27.
4
Engineered Nano-Bio Interfaces for Stem Cell Therapy.
Precis Chem. 2023 Jun 26;1(6):341-356. doi: 10.1021/prechem.3c00056. eCollection 2023 Aug 28.
5
Engineered hydrogels for mechanobiology.
Nat Rev Methods Primers. 2022 Dec 15;2:98. doi: 10.1038/s43586-022-00179-7.
7
Collagen-Based Biomimetic Systems to Study the Biophysical Tumour Microenvironment.
Cancers (Basel). 2022 Nov 30;14(23):5939. doi: 10.3390/cancers14235939.
9
Real and Simulated Microgravity: Focus on Mammalian Extracellular Matrix.
Life (Basel). 2022 Aug 29;12(9):1343. doi: 10.3390/life12091343.
10
Mechanoimmunology: Are inflammatory epigenetic states of macrophages tuned by biophysical factors?
APL Bioeng. 2022 Aug 29;6(3):031502. doi: 10.1063/5.0087699. eCollection 2022 Sep.

本文引用的文献

1
The role of material structure and mechanical properties in cell-matrix interactions.
J Mater Chem B. 2014 May 7;2(17):2345-2356. doi: 10.1039/c3tb21604g. Epub 2014 Jan 22.
2
A Versatile Synthetic Extracellular Matrix Mimic via Thiol-Norbornene Photopolymerization.
Adv Mater. 2009 Dec 28;21(48):5005-5010. doi: 10.1002/adma.200901808. Epub 2009 Oct 7.
3
Interplay of matrix stiffness and protein tethering in stem cell differentiation.
Nat Mater. 2014 Oct;13(10):979-87. doi: 10.1038/nmat4051. Epub 2014 Aug 10.
5
6
Influence of the stiffness of three-dimensional alginate/collagen-I interpenetrating networks on fibroblast biology.
Biomaterials. 2014 Oct;35(32):8927-36. doi: 10.1016/j.biomaterials.2014.06.047. Epub 2014 Jul 19.
8
Materials as stem cell regulators.
Nat Mater. 2014 Jun;13(6):547-57. doi: 10.1038/nmat3937.
9
Combining insoluble and soluble factors to steer stem cell fate.
Nat Mater. 2014 Jun;13(6):532-7. doi: 10.1038/nmat3997.
10
Stress sensitivity and mechanotransduction during heart development.
Curr Biol. 2014 May 19;24(10):R495-501. doi: 10.1016/j.cub.2014.04.027.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验