Department of Bioengineering, Stanford University, Stanford, California 94305, USA.
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA; email:
Annu Rev Biomed Eng. 2018 Jun 4;20:21-47. doi: 10.1146/annurev-bioeng-062117-120954. Epub 2017 Dec 8.
Stem cells are a powerful resource for many applications including regenerative medicine, patient-specific disease modeling, and toxicology screening. However, eliciting the desired behavior from stem cells, such as expansion in a naïve state or differentiation into a particular mature lineage, remains challenging. Drawing inspiration from the native stem cell niche, hydrogel platforms have been developed to regulate stem cell fate by controlling microenvironmental parameters including matrix mechanics, degradability, cell-adhesive ligand presentation, local microstructure, and cell-cell interactions. We survey techniques for modulating hydrogel properties and review the effects of microenvironmental parameters on maintaining stemness and controlling differentiation for a variety of stem cell types. Looking forward, we envision future hydrogel designs spanning a spectrum of complexity, ranging from simple, fully defined materials for industrial expansion of stem cells to complex, biomimetic systems for organotypic cell culture models.
干细胞是许多应用的强大资源,包括再生医学、患者特异性疾病建模和毒理学筛选。然而,从干细胞中获得所需的行为,如在原始状态下扩增或分化为特定的成熟谱系,仍然具有挑战性。受天然干细胞微环境的启发,已经开发出水凝胶平台来通过控制微环境参数(包括基质力学、降解性、细胞黏附配体呈现、局部微观结构和细胞-细胞相互作用)来调节干细胞命运。我们调查了调节水凝胶特性的技术,并回顾了微环境参数对维持各种干细胞类型的干性和控制分化的影响。展望未来,我们设想未来的水凝胶设计涵盖一系列的复杂性,从用于干细胞工业扩增的简单、完全定义的材料到用于器官型细胞培养模型的复杂、仿生系统。