Suppr超能文献

半胱氨酸蛋白酶牙龈蛋白酶K(Kgp)的结构与机制,牙龈卟啉单胞菌在牙周炎中的一种主要毒力因子

Structure and mechanism of cysteine peptidase gingipain K (Kgp), a major virulence factor of Porphyromonas gingivalis in periodontitis.

作者信息

de Diego Iñaki, Veillard Florian, Sztukowska Maryta N, Guevara Tibisay, Potempa Barbara, Pomowski Anja, Huntington James A, Potempa Jan, Gomis-Rüth F Xavier

机构信息

Proteolysis Lab, Molecular Biology Institute of Barcelona, Spanish Research Council (Consejo Superior de Investigaciones Cientificas), Barcelona Science Park, Helix Building, Baldiri Reixac 15-21, 08028 Barcelona, Catalonia, Spain.

Oral Immunology and Infectious Disease, University of Louisville School of Dentistry, Louisville, Kentucky 40202.

出版信息

J Biol Chem. 2014 Nov 14;289(46):32291-32302. doi: 10.1074/jbc.M114.602052. Epub 2014 Sep 29.

Abstract

Cysteine peptidases are key proteolytic virulence factors of the periodontopathogen Porphyromonas gingivalis, which causes chronic periodontitis, the most prevalent dysbiosis-driven disease in humans. Two peptidases, gingipain K (Kgp) and R (RgpA and RgpB), which differ in their selectivity after lysines and arginines, respectively, collectively account for 85% of the extracellular proteolytic activity of P. gingivalis at the site of infection. Therefore, they are promising targets for the design of specific inhibitors. Although the structure of the catalytic domain of RgpB is known, little is known about Kgp, which shares only 27% sequence identity. We report the high resolution crystal structure of a competent fragment of Kgp encompassing the catalytic cysteine peptidase domain and a downstream immunoglobulin superfamily-like domain, which is required for folding and secretion of Kgp in vivo. The structure, which strikingly resembles a tooth, was serendipitously trapped with a fragment of a covalent inhibitor targeting the catalytic cysteine. This provided accurate insight into the active site and suggested that catalysis may require a catalytic triad, Cys(477)-His(444)-Asp(388), rather than the cysteine-histidine dyad normally found in cysteine peptidases. In addition, a 20-Å-long solvent-filled interior channel traverses the molecule and links the bottom of the specificity pocket with the molecular surface opposite the active site cleft. This channel, absent in RgpB, may enhance the plasticity of the enzyme, which would explain the much lower activity in vitro toward comparable specific synthetic substrates. Overall, the present results report the architecture and molecular determinants of the working mechanism of Kgp, including interaction with its substrates.

摘要

半胱氨酸肽酶是牙周病原体牙龈卟啉单胞菌的关键蛋白水解毒力因子,该菌可引发慢性牙周炎,这是人类中最普遍的由生态失调引起的疾病。两种肽酶,牙龈蛋白酶K(Kgp)和R(RgpA和RgpB),分别在赖氨酸和精氨酸之后具有不同的选择性,它们共同占牙龈卟啉单胞菌在感染部位细胞外蛋白水解活性的85%。因此,它们是设计特异性抑制剂的有前景的靶点。尽管RgpB催化结构域的结构已知,但对于序列同一性仅为27%的Kgp却知之甚少。我们报道了Kgp一个活性片段的高分辨率晶体结构,该片段包含催化性半胱氨酸肽酶结构域和一个下游免疫球蛋白超家族样结构域,后者是Kgp在体内折叠和分泌所必需的。该结构惊人地类似于一颗牙齿,偶然地被一种靶向催化性半胱氨酸的共价抑制剂片段所捕获。这为活性位点提供了准确的见解,并表明催化可能需要一个催化三联体Cys(477)-His(444)-Asp(388),而不是通常在半胱氨酸肽酶中发现的半胱氨酸 - 组氨酸二元组。此外,一条20埃长的充满溶剂的内部通道贯穿分子,将特异性口袋的底部与活性位点裂隙相对的分子表面相连。RgpB中不存在这条通道,这可能增强了酶的可塑性,这可以解释其在体外对类似特定合成底物的活性要低得多的原因。总体而言,本研究结果报道了Kgp作用机制的结构和分子决定因素,包括其与底物的相互作用。

相似文献

1
Structure and mechanism of cysteine peptidase gingipain K (Kgp), a major virulence factor of Porphyromonas gingivalis in periodontitis.
J Biol Chem. 2014 Nov 14;289(46):32291-32302. doi: 10.1074/jbc.M114.602052. Epub 2014 Sep 29.
3
Porphyromonas gingivalis virulence factor gingipain RgpB shows a unique zymogenic mechanism for cysteine peptidases.
J Biol Chem. 2013 May 17;288(20):14287-14296. doi: 10.1074/jbc.M112.444927. Epub 2013 Apr 4.
4
Structure of the lysine specific protease Kgp from Porphyromonas gingivalis, a target for improved oral health.
Protein Sci. 2015 Jan;24(1):162-6. doi: 10.1002/pro.2589. Epub 2014 Dec 3.
6
Propeptide-mediated inhibition of cognate gingipain proteinases.
PLoS One. 2013 Jun 10;8(6):e65447. doi: 10.1371/journal.pone.0065447. Print 2013.
7
Porphyromonas gingivalis gingipains: the molecular teeth of a microbial vampire.
Curr Protein Pept Sci. 2003 Dec;4(6):409-26. doi: 10.2174/1389203033487009.
8
The role of gingipains in the pathogenesis of periodontal disease.
J Periodontol. 2003 Jan;74(1):111-8. doi: 10.1902/jop.2003.74.1.111.
9
Generation of lys-gingipain protease activity in Porphyromonas gingivalis W50 is independent of Arg-gingipain protease activities.
Microbiology (Reading). 2000 Aug;146 ( Pt 8):1933-1940. doi: 10.1099/00221287-146-8-1933.
10
Kgp and RgpB, but not RgpA, are important for Porphyromonas gingivalis virulence in the murine periodontitis model.
Infect Immun. 2007 Mar;75(3):1436-42. doi: 10.1128/IAI.01627-06. Epub 2007 Jan 12.

引用本文的文献

3
Top-Down and Middle-Down Mass Spectrometry of Antibodies.
Mol Cell Proteomics. 2025 May 12:100989. doi: 10.1016/j.mcpro.2025.100989.
4
Rapid detection of Lys-gingipain using fluorogenic peptide substrate for diagnosis of periodontitis.
J Dent Sci. 2025 Apr;20(2):802-810. doi: 10.1016/j.jds.2024.09.025. Epub 2024 Oct 15.
5
Synergistic effects of and biofilms on epithelial barrier function in a 3D aspiration pneumonia model.
Front Cell Infect Microbiol. 2025 Mar 7;15:1552395. doi: 10.3389/fcimb.2025.1552395. eCollection 2025.
7
First crystal structure of the DUF2436 domain of virulence proteins from Porphyromonas gingivalis.
Acta Crystallogr F Struct Biol Commun. 2024 Oct 1;80(Pt 10):252-262. doi: 10.1107/S2053230X24008185. Epub 2024 Sep 26.
8
The oral-gut microbiome axis in inflammatory bowel disease: from inside to insight.
Front Immunol. 2024 Jul 26;15:1430001. doi: 10.3389/fimmu.2024.1430001. eCollection 2024.
9
Ecological, beneficial, and pathogenic functions of the Type 9 Secretion System.
Microb Biotechnol. 2024 Jun;17(6):e14516. doi: 10.1111/1751-7915.14516.

本文引用的文献

1
Anti-inflammatory Actions of Adjunctive Tetracyclines and Other Agents in Periodontitis and Associated Comorbidities.
Open Dent J. 2014 May 30;8:109-24. doi: 10.2174/1874210601408010109. eCollection 2014.
2
Periodontal pathogens and atherosclerosis: implications of inflammation and oxidative modification of LDL.
Biomed Res Int. 2014;2014:595981. doi: 10.1155/2014/595981. Epub 2014 May 18.
3
Metagenomic analysis reveals presence of Treponema denticola in a tissue biopsy of the Iceman.
PLoS One. 2014 Jun 18;9(6):e99994. doi: 10.1371/journal.pone.0099994. eCollection 2014.
4
Drug development: Time for teamwork.
Nature. 2014 May 1;509(7498):S4-5. doi: 10.1038/509S4a.
5
Antibiotic resistance: An infectious arms race.
Nature. 2014 May 1;509(7498):S2-3. doi: 10.1038/509S2a.
7
Deciphering key features in protein structures with the new ENDscript server.
Nucleic Acids Res. 2014 Jul;42(Web Server issue):W320-4. doi: 10.1093/nar/gku316. Epub 2014 Apr 21.
9
MP:PD--a data base of internal packing densities, internal packing defects and internal waters of helical membrane proteins.
Nucleic Acids Res. 2014 Jan;42(Database issue):D347-51. doi: 10.1093/nar/gkt1062. Epub 2013 Nov 4.
10
MEROPS: the database of proteolytic enzymes, their substrates and inhibitors.
Nucleic Acids Res. 2014 Jan;42(Database issue):D503-9. doi: 10.1093/nar/gkt953. Epub 2013 Oct 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验