State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871, China; and.
State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871, China; and Collaborative Innovation Center of Quantum Matter, Beijing 100871, China.
Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14657-62. doi: 10.1073/pnas.1408453111. Epub 2014 Sep 29.
Ultrasensitive nanoparticle detection holds great potential for early-stage diagnosis of human diseases and for environmental monitoring. In this work, we report for the first time, to our knowledge, single nanoparticle detection by monitoring the beat frequency of split-mode Raman lasers in high-Q optical microcavities. We first demonstrate this method by controllably transferring single 50-nm-radius nanoparticles to and from the cavity surface using a fiber taper. We then realize real-time detection of single nanoparticles in an aqueous environment, with a record low detection limit of 20 nm in radius, without using additional techniques for laser noise suppression. Because Raman scattering occurs in most materials under practically any pump wavelength, this Raman laser-based sensing method not only removes the need for doping the microcavity with a gain medium but also loosens the requirement of specific wavelength bands for the pump lasers, thus representing a significant step toward practical microlaser sensors.
纳米粒子的超灵敏检测在人类疾病的早期诊断和环境监测方面具有巨大的潜力。在这项工作中,我们首次在高 Q 值光学微腔中通过监测分束模式拉曼激光的拍频,实现了单纳米粒子的检测。我们首先使用光纤锥可控地将单个 50nm 半径的纳米粒子转移到微腔表面,然后实现了在水相环境中单纳米粒子的实时检测,其半径的检测下限低至 20nm,无需使用额外的激光噪声抑制技术。由于在实际的任何泵浦波长下,拉曼散射都会在大多数材料中发生,因此这种基于拉曼激光的传感方法不仅消除了对微腔掺杂增益介质的需求,而且放宽了对泵浦激光特定波长带的要求,因此朝着实用的微激光传感器迈出了重要的一步。