Suppr超能文献

利用光学微腔进行单纳米粒子检测。

Single Nanoparticle Detection Using Optical Microcavities.

机构信息

State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing, 100871, P. R. China.

Collaborative Innovation Center of Quantum Matter, Beijing, 100871, P. R. China.

出版信息

Adv Mater. 2017 Mar;29(12). doi: 10.1002/adma.201604920. Epub 2017 Jan 6.

Abstract

Detection of nanoscale objects is highly desirable in various fields such as early-stage disease diagnosis, environmental monitoring and homeland security. Optical microcavity sensors are renowned for ultrahigh sensitivities due to strongly enhanced light-matter interaction. This review focuses on single nanoparticle detection using optical whispering gallery microcavities and photonic crystal microcavities, both of which have been developing rapidly over the past few years. The reactive and dissipative sensing methods, characterized by light-analyte interactions, are explained explicitly. The sensitivity and the detection limit are essentially determined by the cavity properties, and are limited by the various noise sources in the measurements. On the one hand, recent advances include significant sensitivity enhancement using techniques to construct novel microcavity structures with reduced mode volumes, to localize the mode field, or to introduce optical gain. On the other hand, researchers attempt to lower the detection limit by improving the spectral resolution, which can be implemented by suppressing the experimental noises. We also review the methods of achieving a better temporal resolution by employing mode locking techniques or cavity ring up spectroscopy. In conclusion, outlooks on the possible ways to implement microcavity-based sensing devices and potential applications are provided.

摘要

在早期疾病诊断、环境监测和国土安全等各个领域,对纳米级物体的检测是非常需要的。由于光物质相互作用的强烈增强,光学微腔传感器以超高灵敏度而闻名。本综述重点介绍了使用光学 whispering gallery 微腔和光子晶体微腔进行的单个纳米粒子检测,这两种微腔在过去几年中都得到了快速发展。解释了以光-分析物相互作用为特征的反应和耗散传感方法。灵敏度和检测极限本质上取决于腔的特性,并受到测量中各种噪声源的限制。一方面,最近的进展包括使用技术显著提高灵敏度,这些技术用于构建具有减小的模式体积、局域模场或引入光增益的新型微腔结构。另一方面,研究人员试图通过提高光谱分辨率来降低检测极限,这可以通过抑制实验噪声来实现。我们还回顾了通过采用锁模技术或腔环上光谱学来实现更好的时间分辨率的方法。总之,对实现基于微腔的传感设备和潜在应用的可能方法进行了展望。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验