School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459, Singapore.
ACS Nano. 2014 Oct 28;8(10):10403-13. doi: 10.1021/nn503751s. Epub 2014 Oct 7.
Sunlight is an ideal source of energy, and converting sunlight into chemical fuels, mimicking what nature does, has attracted significant attention in the past decade. In terms of solar energy conversion into chemical fuels, solar water splitting for hydrogen production is one of the most attractive renewable energy technologies, and this achievement would satisfy our increasing demand for carbon-neutral sustainable energy. Here, we report corrosion-resistant, nanocomposite photoelectrodes for spontaneous overall solar water splitting, consisting of a CdS quantum dot (QD) modified TiO2 photoanode and a CdSe QD modified NiO photocathode, where cadmium chalcogenide QDs are protected by a ZnS passivation layer and gas evolution cocatalysts. The optimized device exhibited a maximum efficiency of 0.17%, comparable to that of natural photosynthesis with excellent photostability under visible light illumination. Our device shows spontaneous overall water splitting in a nonsacrificial environment under visible light illumination (λ > 400 nm) through mimicking nature's "Z-scheme" process. The results here also provide a conceptual layout to improve the efficiency of solar-to-fuel conversion, which is solely based on facile, scalable solution-phase techniques.
阳光是一种理想的能源,将阳光转化为化学燃料,模仿自然界的做法,在过去十年中引起了广泛关注。就太阳能转化为化学燃料而言,用于生产氢气的太阳能分解水是最具吸引力的可再生能源技术之一,这一成就将满足我们对碳中和可持续能源日益增长的需求。在这里,我们报告了一种耐腐蚀的纳米复合光电化学电极,用于自发的整体太阳能分解水,它由 CdS 量子点(QD)修饰的 TiO2 光阳极和 CdSe QD 修饰的 NiO 光阴极组成,其中镉硫属量子点由 ZnS 钝化层和气体析出助催化剂保护。优化后的器件表现出 0.17%的最大效率,与自然光的光合作用相当,在可见光照射下具有优异的光稳定性。我们的器件通过模拟自然界的“Z 型”过程,在可见光照射下(λ > 400nm)、非牺牲环境中表现出自发的整体水分解。这里的结果还为提高基于简便、可扩展的溶液相技术的太阳能到燃料的转化效率提供了一个概念性布局。