Suppr超能文献

用于自偏压光电化学水分解的环境友好型胶体量子点修饰双光电极

Environment-Benign Colloidal Quantum Dots-Modified Dual Photoelectrodes for Self-Biased Photoelectrochemical Water Splitting.

作者信息

Xia Li, Li Xin, Yang Yang, Tong Xin

机构信息

School of Electrical and Information Engineering, Panzhihua University, Panzhihua, 617000, P. R. China.

Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.

出版信息

ChemSusChem. 2025 Jan 14;18(2):e202401298. doi: 10.1002/cssc.202401298. Epub 2024 Oct 10.

Abstract

Photoelectrochemical (PEC) water splitting based on colloidal quantum dots (QDs) presents a promising approach for utilizing solar energy to produce green hydrogen energy. Previous research has been mainly focused on the single-photoelectrode QDs-PEC device operated under external bias, while the investigation of dual-photoelectrode configuration for self-biased QDs-PEC system is still lacking. In this work, two types of eco-friendly Cu-AISe/ZnSe:Cu (CZAC) and Mn-AIS/ZnS@Cu (MAZC) QDs were used to respectively sensitize the semiconductor n-type TiO and p-type CuO photoelectrodes, which acted as the photoanode and photocathode to build a heavy metal-free QDs-based bias-free solar water splitting cell, yielding a maximum photocurrent density of 0.47 mA cm and a solar-to-hydrogen (STH) efficiency of 0.4 % under 1 sun AM 1.5G illumination (100 mW cm). Moreover, approximate 692 nmol of H and 355 nmol of O with molar ratio of ~2 : 1 was detected after two hours of continuous light illumination, demonstrating the effective overall water splitting. This work indicates a significant advancement towards the realization of a cost-effective, efficient and "green" QDs-based artificial solar-to-fuel conversion system.

摘要

基于胶体量子点(QDs)的光电化学(PEC)水分解为利用太阳能生产绿色氢能提供了一种很有前景的方法。先前的研究主要集中在外部偏压下运行的单光电极量子点PEC装置,而对于自偏压量子点PEC系统的双光电极配置的研究仍然缺乏。在这项工作中,两种环保型的Cu-AISe/ZnSe:Cu(CZAC)和Mn-AIS/ZnS@Cu(MAZC)量子点分别用于敏化半导体n型TiO和p型CuO光电极,它们分别作为光阳极和光阴极,构建了一个无重金属的基于量子点的无偏压太阳能水分解电池,在1个太阳AM 1.5G光照(100 mW cm)下,产生的最大光电流密度为0.47 mA cm,太阳能到氢能(STH)效率为0.4%。此外,在连续光照两小时后,检测到约692 nmol的H和355 nmol的O,摩尔比约为2:1,证明了有效的整体水分解。这项工作表明,在实现具有成本效益、高效且“绿色”的基于量子点的人工太阳能到燃料转换系统方面取得了重大进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验