Suppr超能文献

通过驱动蛋白马达密度控制微管卷轴的自组装

Controlling self-assembly of microtubule spools via kinesin motor density.

作者信息

Lam A T, Curschellas C, Krovvidi D, Hess H

机构信息

Department of Biomedical Engineering, 351 Engineering Terrace, 1210 Amsterdam Avenue, MC 8904, New York, NY 10027, USA.

出版信息

Soft Matter. 2014 Nov 21;10(43):8731-6. doi: 10.1039/c4sm01518e.

Abstract

Active self-assembly, in which non-thermal energy is consumed by the system to put together building blocks, allows the creation of non-equilibrium structures and active materials. Microtubule spools assembled in gliding assays are one example of such non-equilibrium structures, capable of storing bending energies on the order of 10(5) kT. Although these structures arise spontaneously in experiments, the origin of microtubule spooling has long been debated. Here, using a stepwise kinesin gradient, we demonstrate that spool assembly can be controlled by the surface density of kinesin motors, showing that pinning of microtubules due to dead motors plays a dominant role in spool initiation.

摘要

主动自组装是指系统消耗非热能来组装构建模块,它能够创造非平衡结构和活性材料。在滑动实验中组装的微管卷轴就是这种非平衡结构的一个例子,其能够存储约10⁵kT量级的弯曲能量。尽管这些结构在实验中是自发产生的,但微管卷轴形成的起源长期以来一直存在争议。在这里,我们利用逐步的驱动蛋白梯度,证明卷轴组装可以由驱动蛋白马达的表面密度控制,这表明失活马达导致的微管固定在卷轴起始过程中起主导作用。

相似文献

1
Controlling self-assembly of microtubule spools via kinesin motor density.
Soft Matter. 2014 Nov 21;10(43):8731-6. doi: 10.1039/c4sm01518e.
2
How non-bonding domains affect the active assembly of microtubule spools.
Nanoscale. 2019 Jun 20;11(24):11562-11568. doi: 10.1039/c9nr02059d.
3
Velocity Fluctuations in Kinesin-1 Gliding Motility Assays Originate in Motor Attachment Geometry Variations.
Langmuir. 2016 Aug 9;32(31):7943-50. doi: 10.1021/acs.langmuir.6b02369. Epub 2016 Jul 26.
4
Mechanisms Underlying the Active Self-Assembly of Microtubule Rings and Spools.
Biomacromolecules. 2016 Mar 14;17(3):1048-56. doi: 10.1021/acs.biomac.5b01684. Epub 2016 Feb 17.
5
Molecular wear of microtubules propelled by surface-adhered kinesins.
Nat Nanotechnol. 2015 Feb;10(2):166-9. doi: 10.1038/nnano.2014.334. Epub 2015 Jan 26.
6
Quantum-dot-assisted characterization of microtubule rotations during cargo transport.
Nat Nanotechnol. 2008 Sep;3(9):552-6. doi: 10.1038/nnano.2008.216. Epub 2008 Aug 10.
7
Structures of kinesin and kinesin-microtubule interactions.
Curr Opin Cell Biol. 1999 Feb;11(1):34-44. doi: 10.1016/s0955-0674(99)80005-2.
8
Motor-protein "roundabouts": microtubules moving on kinesin-coated tracks through engineered networks.
Lab Chip. 2004 Apr;4(2):83-6. doi: 10.1039/b317059d. Epub 2004 Feb 27.
9
The C-terminus of kinesin-14 Ncd is a crucial component of the force generating mechanism.
FEBS Lett. 2012 Mar 23;586(6):854-8. doi: 10.1016/j.febslet.2012.02.011. Epub 2012 Feb 16.
10
Reversibly Bound Kinesin-1 Motor Proteins Propelling Microtubules Demonstrate Dynamic Recruitment of Active Building Blocks.
Nano Lett. 2018 Feb 14;18(2):1530-1534. doi: 10.1021/acs.nanolett.7b05361. Epub 2018 Jan 24.

引用本文的文献

1
Atomistic molecular dynamics simulations of tubulin heterodimers explain the motion of a microtubule.
Eur Biophys J. 2021 Oct;50(7):927-940. doi: 10.1007/s00249-021-01553-1. Epub 2021 Jul 2.
2
Buckling instabilities and spatio-temporal dynamics of active elastic filaments.
J R Soc Interface. 2020 Apr;17(165):20190794. doi: 10.1098/rsif.2019.0794. Epub 2020 Apr 22.
3
Synchronous operation of biomolecular engines.
Biophys Rev. 2020 Apr;12(2):401-409. doi: 10.1007/s12551-020-00651-2. Epub 2020 Mar 3.

本文引用的文献

1
Spontaneous motion in hierarchically assembled active matter.
Nature. 2012 Nov 15;491(7424):431-4. doi: 10.1038/nature11591. Epub 2012 Nov 7.
2
Modeling negative cooperativity in streptavidin adsorption onto biotinylated microtubules.
Langmuir. 2012 Jul 24;28(29):10635-9. doi: 10.1021/la302034h. Epub 2012 Jul 12.
3
Nanoscale transport enables active self-assembly of millimeter-scale wires.
Nano Lett. 2012 Jan 11;12(1):240-5. doi: 10.1021/nl203450h. Epub 2011 Dec 2.
4
Frozen steady states in active systems.
Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19183-8. doi: 10.1073/pnas.1107540108. Epub 2011 Nov 14.
5
Loop formation of microtubules during gliding at high density.
J Phys Condens Matter. 2011 Sep 21;23(37):374104. doi: 10.1088/0953-8984/23/37/374104. Epub 2011 Aug 23.
6
Dual transport systems based on hybrid nanostructures of microtubules and actin filaments.
Small. 2011 Jul 4;7(13):1755-60. doi: 10.1002/smll.201002267. Epub 2011 May 12.
7
Origin of twist-bend coupling in actin filaments.
Biophys J. 2010 Sep 22;99(6):1852-60. doi: 10.1016/j.bpj.2010.07.009.
8
Microtubule bundle formation driven by ATP: the effect of concentrations of kinesin, streptavidin and microtubules.
Nanotechnology. 2010 Apr 9;21(14):145603. doi: 10.1088/0957-4484/21/14/145603. Epub 2010 Mar 10.
9
Selective formation of a linear-shaped bundle of microtubules.
Langmuir. 2010 Jan 5;26(1):533-7. doi: 10.1021/la902197f.
10
Ring-shaped assembly of microtubules shows preferential counterclockwise motion.
Biomacromolecules. 2008 Sep;9(9):2277-82. doi: 10.1021/bm800639w. Epub 2008 Jul 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验