Keya Jakia Jannat, Kabir Arif Md Rashedul, Kakugo Akira
Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.
Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.
Biophys Rev. 2020 Apr;12(2):401-409. doi: 10.1007/s12551-020-00651-2. Epub 2020 Mar 3.
Biomolecular motor systems are the smallest natural machines with an ability to convert chemical energy into mechanical work with remarkably high efficiency. Such attractive features enabled biomolecular motors to become classic tools in soft matter research over the past decade. For designing suitably engineered biomimetic systems, the biomolecular motors can potentially be used as molecular engines that can transform energy and ensure great advantages for the construction of bio-nanodevices and molecular robots. From the optimization of their prolonged lifetime to coordinate them into highly complex and ordered structures, enormous efforts have been devoted to make them useful in the synthetic environment. Synchronous operation of the biomolecular engines is one of the key criteria to coordinate them into certain different patterns, which depends on the local interaction of biomolecular motors. Utilizing chemical and physical stimuli, synchronization of biomolecular motor systems has become possible, which allows them to coordinate into different higher ordered patterns with different modes of functionality. Recently, programmed synchronous operation of the biomolecular engines has also been demonstrated, using a smart biomaterial to build up swarms reminiscent of nature. Here, we review the recent progress in the synchronized operation of biomolecular motors in engineered systems to explicitly program their interaction and further their applications. Such developments in the coordination of biomolecular motors have opened a broad way to explore the construction of future autonomous molecular machines and robots based on synchronization of biomolecular engines.
生物分子马达系统是最小的天然机器,能够以极高的效率将化学能转化为机械功。在过去十年中,这些引人注目的特性使生物分子马达成为软物质研究中的经典工具。为了设计合适的工程仿生系统,生物分子马达有可能被用作分子引擎,它们可以转化能量,并为构建生物纳米器件和分子机器人带来巨大优势。为了优化它们的使用寿命并将它们协调成高度复杂和有序的结构,人们付出了巨大努力使其在合成环境中发挥作用。生物分子引擎的同步运行是将它们协调成特定不同模式的关键标准之一,这取决于生物分子马达的局部相互作用。利用化学和物理刺激,生物分子马达系统的同步成为可能,这使它们能够以不同的功能模式协调成不同的更高阶模式。最近,还展示了生物分子引擎的编程同步运行,使用智能生物材料构建出类似自然界的群体。在此,我们回顾了工程系统中生物分子马达同步运行的最新进展,以明确编程它们的相互作用及其进一步应用。生物分子马达协调方面的这些进展为探索基于生物分子引擎同步的未来自主分子机器和机器人的构建开辟了广阔道路。