Kiapour Ata M, Shalvoy Matthew R, Murray Martha M, Fleming Braden C
Sports Medicine Research Laboratory, Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
Clin Orthop Relat Res. 2015 Feb;473(2):639-50. doi: 10.1007/s11999-014-3974-2. Epub 2014 Oct 1.
Animal models have long been considered an important modality for studying ACL injuries. However, to our knowledge, the value of these preclinical models to study sex-related phenomena associated with ACL injury and recovery has not been evaluated.
QUESTIONS/PURPOSES: We asked whether (1) prominent anatomic and (2) biomechanical factors differ between female and male porcine knees, particularly those known to increase the risk of ACL injury.
Eighteen intact minipig knees (nine males, nine females) underwent MRI to determine the femoral bicondylar width, intercondylar notch size (width, area and index), medial and lateral tibial slope, ACL size (length, cross-sectional area, and volume), and medial compartment tibiofemoral cartilage thickness. AP knee laxity at 30°, 60°, and 90° flexion and ACL tensile structural properties were measured using custom-designed loading fixtures in a universal tensile testing apparatus. Comparisons between males and females were performed for all anatomic and biomechanical measures. The findings then were compared with published data from human knees.
Female pigs had smaller bicondylar widths (2.9 mm, ratio=0.93, effect size=-1.5) and intercondylar notches (width: 2.0 mm, ratio=0.79, effect size=-2.8; area: 30.8 mm2, ratio=0.76, effect size=-2.1; index: 0.4, ratio=0.84, effect size=-2.0), steeper lateral tibial slope (4.3°, ratio=1.13, effect size=1.1), smaller ACL (length: 2.7 mm, ratio=0.91, effect size=-1.1; area: 6.8 mm2, ratio=0.74, effect size=-1.5; volume: 266.2 mm3, ratio=0.68, effect size=-1.5), thinner medial femoral cartilage (0.4 mm, ratio=0.8, effect size=-1.1), lower ACL yield load (275 N, ratio=0.81, effect size=-1.1), and greater AP knee laxity at 30° (0.7 mm, ratio=1.32, effect size=1.1) and 90° (0.5 mm, ratio=1.24, effect size=1.1) flexion compared with their male counterparts. These differences were significant for all parameters (p≤0.04). Observed sex-related differences were similar to those reported for the human knee.
Significant differences exist between knees of male and female pigs with respect to prominent anatomic and biomechanical factors. Our findings strongly agreed with published data regarding human knees.
The findings highlight the use of the porcine large animal model to study the role of sex on ACL injuries and surgical outcome. This validated preclinical model may facilitate the development of novel, sex-specific interventions to prevent and treat ACL injuries for male and female patients.
长期以来,动物模型一直被视为研究前交叉韧带(ACL)损伤的重要手段。然而,据我们所知,这些临床前模型在研究与ACL损伤及恢复相关的性别差异现象方面的价值尚未得到评估。
问题/目的:我们探讨了(1)雌性和雄性猪膝关节之间突出的解剖学和(2)生物力学因素是否存在差异,特别是那些已知会增加ACL损伤风险的因素。
对18个完整的小型猪膝关节(9只雄性,9只雌性)进行磁共振成像(MRI),以确定股骨髁间宽度、髁间窝大小(宽度、面积和指数)、胫骨内外侧斜率、ACL大小(长度、横截面积和体积)以及内侧胫股关节软骨厚度。使用通用拉伸试验装置中的定制加载夹具测量膝关节在30°、60°和90°屈曲时的前后向松弛度以及ACL的拉伸结构特性。对所有解剖学和生物力学指标在雄性和雌性之间进行比较。然后将结果与已发表的人类膝关节数据进行比较。
与雄性猪相比,雌性猪的髁间宽度更小(2.9毫米,比值 = 0.93,效应大小 = -1.5)、髁间窝更小(宽度:2.0毫米,比值 = 0.79,效应大小 = -2.8;面积:30.8平方毫米,比值 = 0.76,效应大小 = -2.1;指数:0.4,比值 = 0.84,效应大小 = -2.0)、胫骨外侧斜率更陡(4.3°,比值 = 1.13,效应大小 = 1.1)、ACL更小(长度:2.7毫米,比值 = 0.91,效应大小 = -1.1;面积:6.8平方毫米,比值 = 0.74,效应大小 = -1.5;体积:266.2立方毫米,比值 = 0.68,效应大小 = -1.5)、内侧股骨软骨更薄(0.4毫米,比值 = 0.8,效应大小 = -1.1)、ACL屈服载荷更低(275牛,比值 = 0.81,效应大小 = -1.1),并且在30°(0.7毫米,比值 = 1.32,效应大小 = 1.1)和90°(0.5毫米,比值 = 1.24,效应大小 = 1.1)屈曲时膝关节前后向松弛度更大。所有参数的这些差异均具有统计学意义(p≤0.04)。观察到的性别差异与人类膝关节报道的差异相似。
雄性和雌性猪膝关节在突出的解剖学和生物力学因素方面存在显著差异。我们的研究结果与已发表的关于人类膝关节的数据高度一致。
这些发现突出了猪大型动物模型在研究性别对ACL损伤及手术结果影响方面的应用。这种经过验证的临床前模型可能有助于开发针对男性和女性患者预防和治疗ACL损伤的新型性别特异性干预措施。