Suppr超能文献

欧洲弗洛酵母的群体结构和比较基因组杂交揭示了一组独特的酿酒酵母菌株,其基因组中基因重复很少。

Population structure and comparative genome hybridization of European flor yeast reveal a unique group of Saccharomyces cerevisiae strains with few gene duplications in their genome.

作者信息

Legras Jean-Luc, Erny Claude, Charpentier Claudine

机构信息

INRA, UMR1083 Science pour l'Œnologie, Montpellier, France; Montpellier SupAgro, UMR1083 Science pour l'Œnologie, Montpellier, France; Université Montpellier 1, UMR1083 Science pour l'Œnologie, Montpellier, France.

Université de Haute Alsace, Laboratoire Vigne Biotechnologies et Environnement, Colmar, France.

出版信息

PLoS One. 2014 Oct 1;9(10):e108089. doi: 10.1371/journal.pone.0108089. eCollection 2014.

Abstract

Wine biological aging is a wine making process used to produce specific beverages in several countries in Europe, including Spain, Italy, France, and Hungary. This process involves the formation of a velum at the surface of the wine. Here, we present the first large scale comparison of all European flor strains involved in this process. We inferred the population structure of these European flor strains from their microsatellite genotype diversity and analyzed their ploidy. We show that almost all of these flor strains belong to the same cluster and are diploid, except for a few Spanish strains. Comparison of the array hybridization profile of six flor strains originating from these four countries, with that of three wine strains did not reveal any large segmental amplification. Nonetheless, some genes, including YKL221W/MCH2 and YKL222C, were amplified in the genome of four out of six flor strains. Finally, we correlated ICR1 ncRNA and FLO11 polymorphisms with flor yeast population structure, and associate the presence of wild type ICR1 and a long Flo11p with thin velum formation in a cluster of Jura strains. These results provide new insight into the diversity of flor yeast and show that combinations of different adaptive changes can lead to an increase of hydrophobicity and affect velum formation.

摘要

葡萄酒生物陈酿是欧洲几个国家(包括西班牙、意大利、法国和匈牙利)用于生产特定饮品的一种酿酒工艺。该过程涉及在葡萄酒表面形成菌膜。在此,我们首次对参与此过程的所有欧洲酒花酵母菌株进行了大规模比较。我们从它们的微卫星基因型多样性推断出这些欧洲酒花酵母菌株的种群结构,并分析了它们的倍性。我们发现,除了少数西班牙菌株外,几乎所有这些酒花酵母菌株都属于同一簇且为二倍体。对来自这四个国家的六个酒花酵母菌株与三个葡萄酒菌株的阵列杂交图谱进行比较,未发现任何大片段扩增。尽管如此,包括YKL221W/MCH2和YKL222C在内的一些基因在六个酒花酵母菌株中的四个菌株基因组中发生了扩增。最后,我们将ICR1非编码RNA和FLO11多态性与酒花酵母种群结构相关联,并将野生型ICR1和长型Flo11p的存在与汝拉菌株簇中薄菌膜的形成联系起来。这些结果为酒花酵母的多样性提供了新的见解,并表明不同适应性变化的组合可导致疏水性增加并影响菌膜形成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36f1/4182726/a7c109f95acf/pone.0108089.g001.jpg

相似文献

2
French Jura flor yeasts: genotype and technological diversity.
Antonie Van Leeuwenhoek. 2009 Mar;95(3):263-73. doi: 10.1007/s10482-009-9309-8. Epub 2009 Feb 17.
3
Genomic signatures of adaptation to wine biological ageing conditions in biofilm-forming flor yeasts.
Mol Ecol. 2017 Apr;26(7):2150-2166. doi: 10.1111/mec.14053. Epub 2017 Mar 13.
4
Flor Yeast Diversity and Dynamics in Biologically Aged Wines.
Front Microbiol. 2018 Sep 25;9:2235. doi: 10.3389/fmicb.2018.02235. eCollection 2018.
5
Flor yeasts of Saccharomyces cerevisiae--their ecology, genetics and metabolism.
Int J Food Microbiol. 2013 Oct 15;167(2):269-75. doi: 10.1016/j.ijfoodmicro.2013.08.021. Epub 2013 Sep 10.
6
FLO11 is essential for flor formation caused by the C-terminal deletion of NRG1 in Saccharomyces cerevisiae.
FEMS Microbiol Lett. 2004 Aug 15;237(2):425-30. doi: 10.1016/j.femsle.2004.07.012.
8
FLO11 is the primary factor in flor formation caused by cell surface hydrophobicity in wild-type flor yeast.
Biosci Biotechnol Biochem. 2006 Mar;70(3):660-6. doi: 10.1271/bbb.70.660.
10
FLO11 Gene Is Involved in the Interaction of Flor Strains of Saccharomyces cerevisiae with a Biofilm-Promoting Synthetic Hexapeptide.
Appl Environ Microbiol. 2013 Oct;79(19):6023-32. doi: 10.1128/AEM.01647-13. Epub 2013 Jul 26.

引用本文的文献

2
Genomic Adaptations of Genus to Wine Niche.
Microorganisms. 2022 Sep 9;10(9):1811. doi: 10.3390/microorganisms10091811.
4
Revisiting the Taxonomic Synonyms and Populations of -Phylogeny, Phenotypes, Ecology and Domestication.
Microorganisms. 2020 Jun 15;8(6):903. doi: 10.3390/microorganisms8060903.
6
A polyploid admixed origin of beer yeasts derived from European and Asian wine populations.
PLoS Biol. 2019 Mar 5;17(3):e3000147. doi: 10.1371/journal.pbio.3000147. eCollection 2019 Mar.
7
Aneuploidy and Ethanol Tolerance in .
Front Genet. 2019 Feb 12;10:82. doi: 10.3389/fgene.2019.00082. eCollection 2019.
8
Flor Yeast Diversity and Dynamics in Biologically Aged Wines.
Front Microbiol. 2018 Sep 25;9:2235. doi: 10.3389/fmicb.2018.02235. eCollection 2018.

本文引用的文献

2
A simple FCM method to avoid misinterpretation in Saccharomyces cerevisiae cell cycle assessment between G0 and sub-G1.
PLoS One. 2014 Jan 2;9(1):e84645. doi: 10.1371/journal.pone.0084645. eCollection 2014.
4
Flor yeasts of Saccharomyces cerevisiae--their ecology, genetics and metabolism.
Int J Food Microbiol. 2013 Oct 15;167(2):269-75. doi: 10.1016/j.ijfoodmicro.2013.08.021. Epub 2013 Sep 10.
6
Genome-wide study of the adaptation of Saccharomyces cerevisiae to the early stages of wine fermentation.
PLoS One. 2013 Sep 5;8(9):e74086. doi: 10.1371/journal.pone.0074086. eCollection 2013.
7
Indigenous yeast population from Georgian aged wines produced by traditional "Kakhetian" method.
Food Microbiol. 2013 Dec;36(2):447-55. doi: 10.1016/j.fm.2013.07.008. Epub 2013 Aug 1.
8
Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations.
Nature. 2013 Aug 29;500(7464):571-4. doi: 10.1038/nature12344. Epub 2013 Jul 21.
9
Dynamic large-scale chromosomal rearrangements fuel rapid adaptation in yeast populations.
PLoS Genet. 2013;9(1):e1003232. doi: 10.1371/journal.pgen.1003232. Epub 2013 Jan 24.
10
Role of social wasps in Saccharomyces cerevisiae ecology and evolution.
Proc Natl Acad Sci U S A. 2012 Aug 14;109(33):13398-403. doi: 10.1073/pnas.1208362109. Epub 2012 Jul 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验