Suppr超能文献

开发改进的电缆模型以模拟精确的神经元活动行为。

Development of modified cable models to simulate accurate neuronal active behaviors.

作者信息

Elbasiouny Sherif M

机构信息

Departments of Neuroscience, Cell Biology, & Physiology and Biomedical, Industrial & Human Factors Engineering, Boonshoft School of Medicine, College of Science and Mathematics, and College of Engineering and Computer Science, Wright State University, Dayton, Ohio

出版信息

J Appl Physiol (1985). 2014 Dec 1;117(11):1243-61. doi: 10.1152/japplphysiol.00496.2014. Epub 2014 Oct 2.

Abstract

In large network and single three-dimensional (3-D) neuron simulations, high computing speed dictates using reduced cable models to simulate neuronal firing behaviors. However, these models are unwarranted under active conditions and lack accurate representation of dendritic active conductances that greatly shape neuronal firing. Here, realistic 3-D (R3D) models (which contain full anatomical details of dendrites) of spinal motoneurons were systematically compared with their reduced single unbranched cable (SUC, which reduces the dendrites to a single electrically equivalent cable) counterpart under passive and active conditions. The SUC models matched the R3D model's passive properties but failed to match key active properties, especially active behaviors originating from dendrites. For instance, persistent inward currents (PIC) hysteresis, frequency-current (FI) relationship secondary range slope, firing hysteresis, plateau potential partial deactivation, staircase currents, synaptic current transfer ratio, and regional FI relationships were not accurately reproduced by the SUC models. The dendritic morphology oversimplification and lack of dendritic active conductances spatial segregation in the SUC models caused significant underestimation of those behaviors. Next, SUC models were modified by adding key branching features in an attempt to restore their active behaviors. The addition of primary dendritic branching only partially restored some active behaviors, whereas the addition of secondary dendritic branching restored most behaviors. Importantly, the proposed modified models successfully replicated the active properties without sacrificing model simplicity, making them attractive candidates for running R3D single neuron and network simulations with accurate firing behaviors. The present results indicate that using reduced models to examine PIC behaviors in spinal motoneurons is unwarranted.

摘要

在大型网络和单个三维(3-D)神经元模拟中,高计算速度决定了使用简化电缆模型来模拟神经元放电行为。然而,这些模型在活跃条件下是不合理的,并且缺乏对极大地塑造神经元放电的树突活性电导的准确表示。在这里,系统地比较了脊髓运动神经元的真实三维(R3D)模型(包含树突的完整解剖细节)与其在被动和活跃条件下的简化单无分支电缆(SUC,将树突简化为单个电等效电缆)对应模型。SUC模型与R3D模型的被动特性相匹配,但未能匹配关键的活跃特性,特别是源自树突的活跃行为。例如,持续内向电流(PIC)滞后、频率-电流(FI)关系的二次范围斜率、放电滞后、平台电位部分失活、阶梯电流、突触电流传递率和区域FI关系均未被SUC模型准确再现。SUC模型中树突形态的过度简化和树突活性电导空间分离的缺乏导致这些行为被显著低估。接下来,通过添加关键分支特征对SUC模型进行修改,试图恢复其活跃行为。仅添加初级树突分支只能部分恢复一些活跃行为,而添加次级树突分支则恢复了大多数行为。重要的是,所提出的修改模型成功地复制了活跃特性,而没有牺牲模型的简单性,使其成为运行具有准确放电行为的R3D单神经元和网络模拟的有吸引力的候选模型。目前的结果表明,使用简化模型来研究脊髓运动神经元中的PIC行为是不合理的。

相似文献

1
Development of modified cable models to simulate accurate neuronal active behaviors.
J Appl Physiol (1985). 2014 Dec 1;117(11):1243-61. doi: 10.1152/japplphysiol.00496.2014. Epub 2014 Oct 2.
2
Simulation of Ca2+ persistent inward currents in spinal motoneurones: mode of activation and integration of synaptic inputs.
J Physiol. 2006 Jan 15;570(Pt 2):355-74. doi: 10.1113/jphysiol.2005.099119. Epub 2005 Nov 24.
3
Influence of active dendritic currents on input-output processing in spinal motoneurons in vivo.
J Neurophysiol. 2003 Jan;89(1):27-39. doi: 10.1152/jn.00137.2002.
4
Impact of the localization of dendritic calcium persistent inward current on the input-output properties of spinal motoneuron pool: a computational study.
J Appl Physiol (1985). 2017 Nov 1;123(5):1166-1187. doi: 10.1152/japplphysiol.00034.2017. Epub 2017 Jul 6.
5
Simulation of dendritic CaV1.3 channels in cat lumbar motoneurons: spatial distribution.
J Neurophysiol. 2005 Dec;94(6):3961-74. doi: 10.1152/jn.00391.2005. Epub 2005 Aug 24.
6
Contribution of intrinsic properties and synaptic inputs to motoneuron discharge patterns: a simulation study.
J Neurophysiol. 2012 Feb;107(3):808-23. doi: 10.1152/jn.00510.2011. Epub 2011 Oct 26.
8
Active dendrites reduce location-dependent variability of synaptic input trains.
J Neurophysiol. 1997 Oct;78(4):2116-28. doi: 10.1152/jn.1997.78.4.2116.
9
Synaptic integration in motoneurons with hyper-excitable dendrites.
Can J Physiol Pharmacol. 2004 Aug-Sep;82(8-9):549-55. doi: 10.1139/y04-046.

引用本文的文献

1
Onion skin is not a universal firing pattern for spinal motoneurons: simulation study.
J Neurophysiol. 2024 Jul 1;132(1):240-258. doi: 10.1152/jn.00479.2023. Epub 2024 Jun 12.
2
Bifurcation analysis of motoneuronal excitability mechanisms under normal and ALS conditions.
Front Cell Neurosci. 2023 Feb 16;17:1093199. doi: 10.3389/fncel.2023.1093199. eCollection 2023.
3
In-silico development and assessment of a Kalman filter motor decoder for prosthetic hand control.
Comput Biol Med. 2021 May;132:104353. doi: 10.1016/j.compbiomed.2021.104353. Epub 2021 Mar 22.
4
The Mechanistic Basis for Successful Spinal Cord Stimulation to Generate Steady Motor Outputs.
Front Cell Neurosci. 2019 Aug 9;13:359. doi: 10.3389/fncel.2019.00359. eCollection 2019.
5
Robust and accurate decoding of motoneuron behaviour and prediction of the resulting force output.
J Physiol. 2018 Jul;596(14):2643-2659. doi: 10.1113/JP276153. Epub 2018 Jun 9.
6
PyMUS: Python-Based Simulation Software for Virtual Experiments on Motor Unit System.
Front Neuroinform. 2018 Apr 11;12:15. doi: 10.3389/fninf.2018.00015. eCollection 2018.
7
The vulnerability of spinal motoneurons and soma size plasticity in a mouse model of amyotrophic lateral sclerosis.
J Physiol. 2018 May 1;596(9):1723-1745. doi: 10.1113/JP275498. Epub 2018 Mar 26.
8
The effects of model composition design choices on high-fidelity simulations of motoneuron recruitment and firing behaviors.
J Neural Eng. 2018 Jun;15(3):036024. doi: 10.1088/1741-2552/aa9db5. Epub 2017 Nov 28.
9
Synaptic control of the shape of the motoneuron pool input-output function.
J Neurophysiol. 2017 Mar 1;117(3):1171-1184. doi: 10.1152/jn.00850.2016. Epub 2017 Jan 4.
10
Foundational dendritic processing that is independent of the cell type-specific structure in model primary neurons.
Neurosci Lett. 2015 Nov 16;609:203-9. doi: 10.1016/j.neulet.2015.10.017. Epub 2015 Oct 14.

本文引用的文献

1
Adult spinal motoneurones are not hyperexcitable in a mouse model of inherited amyotrophic lateral sclerosis.
J Physiol. 2014 Apr 1;592(7):1687-703. doi: 10.1113/jphysiol.2013.265843. Epub 2014 Jan 20.
3
Models of passive and active dendrite motoneuron pools and their differences in muscle force control.
J Comput Neurosci. 2012 Dec;33(3):515-31. doi: 10.1007/s10827-012-0398-4. Epub 2012 May 6.
4
Contribution of intrinsic properties and synaptic inputs to motoneuron discharge patterns: a simulation study.
J Neurophysiol. 2012 Feb;107(3):808-23. doi: 10.1152/jn.00510.2011. Epub 2011 Oct 26.
5
Asymmetric electrotonic coupling between the soma and dendrites alters the bistable firing behaviour of reduced models.
J Comput Neurosci. 2011 Jun;30(3):659-74. doi: 10.1007/s10827-010-0284-x. Epub 2010 Oct 13.
8
Alternative splicing in the voltage-gated sodium channel DmNav regulates activation, inactivation, and persistent current.
J Neurophysiol. 2009 Sep;102(3):1994-2006. doi: 10.1152/jn.00613.2009. Epub 2009 Jul 22.
10
Staircase currents in motoneurons: insight into the spatial arrangement of calcium channels in the dendritic tree.
J Neurosci. 2009 Apr 22;29(16):5343-53. doi: 10.1523/JNEUROSCI.5458-08.2009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验