Laboratoire de Neurophysique et Physiologie, UMR CNRS 8119, Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France.
J Physiol. 2014 Apr 1;592(7):1687-703. doi: 10.1113/jphysiol.2013.265843. Epub 2014 Jan 20.
In amyotrophic lateral sclerosis (ALS), an adult onset disease in which there is progressive degeneration of motoneurones, it has been suggested that an intrinsic hyperexcitability of motoneurones (i.e. an increase in their firing rates), contributes to excitotoxicity and to disease onset. Here we show that there is no such intrinsic hyperexcitability in spinal motoneurones. Our studies were carried out in an adult mouse model of ALS with a mutated form of superoxide dismutase 1 around the time of the first muscle fibre denervations. We showed that the recruitment current, the voltage threshold for spiking and the frequency-intensity gain in the primary range are all unchanged in most spinal motoneurones, despite an increased input conductance. On its own, increased input conductance would decrease excitability, but the homeostasis for excitability is maintained due to an upregulation of a depolarizing current that is activated just below the spiking threshold. However, this homeostasis failed in a substantial fraction of motoneurones, which became hypoexcitable and unable to produce sustained firing in response to ramps of current. We found similar results both in lumbar motoneurones recorded in anaesthetized mice, and in sacrocaudal motoneurones recorded in vitro, indicating that the lack of hyperexcitability is not caused by anaesthetics. Our results suggest that, if excitotoxicity is indeed a mechanism leading to degeneration in ALS, it is not caused by the intrinsic electrical properties of motoneurones but by extrinsic factors such as excessive synaptic excitation.
在肌萎缩侧索硬化症(ALS)中,运动神经元进行性退化,这是一种成年发病的疾病。有研究表明,运动神经元的内在过度兴奋性(即其放电频率增加)会导致兴奋性毒性,并导致疾病的发生。在这里,我们证明脊髓运动神经元没有这种内在的过度兴奋性。我们的研究是在超氧化物歧化酶 1 突变的成年 ALS 小鼠模型中进行的,此时正值首次出现肌纤维去神经支配。我们发现,尽管输入电导增加,但大多数脊髓运动神经元的募集电流、脉冲产生的电压阈值以及在主要范围的频率-强度增益都没有改变。单独增加输入电导会降低兴奋性,但由于去极化电流的上调,兴奋性的平衡得以维持,这种电流在脉冲产生阈值以下被激活。然而,这种平衡在很大一部分运动神经元中失败了,这些神经元变得兴奋性降低,无法对电流斜坡产生持续的放电。我们在麻醉小鼠记录的腰髓运动神经元和在体外记录的荐尾运动神经元中都发现了类似的结果,这表明缺乏过度兴奋性不是由麻醉剂引起的。我们的结果表明,如果兴奋性毒性确实是导致 ALS 变性的一种机制,那么它不是由运动神经元的内在电特性引起的,而是由过度的突触兴奋等外在因素引起的。