Suppr超能文献

通过提高放电电压提高电容去离子中的电荷效率并降低能耗。

Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage.

作者信息

Kim T, Dykstra J E, Porada S, van der Wal A, Yoon J, Biesheuvel P M

机构信息

Wetsus, centre of excellence for sustainable water technology, Oostergoweg 7, 8911 MA Leeuwarden, The Netherlands; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 151-742, Republic of Korea.

Wetsus, centre of excellence for sustainable water technology, Oostergoweg 7, 8911 MA Leeuwarden, The Netherlands; Department of Environmental Technology, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.

出版信息

J Colloid Interface Sci. 2015 May 15;446:317-26. doi: 10.1016/j.jcis.2014.08.041. Epub 2014 Sep 6.

Abstract

Capacitive deionization (CDI) is an electrochemical method for water desalination using porous carbon electrodes. A key parameter in CDI is the charge efficiency, Λ, which is the ratio of salt adsorption over charge in a CDI-cycle. Values for Λ in CDI are typically around 0.5-0.8, significantly less than the theoretical maximum of unity, due to the fact that not only counterions are adsorbed into the pores of the carbon electrodes, but at the same time coions are released. To enhance Λ, ion-exchange membranes (IEMs) can be implemented. With membranes, Λ can be close to unity because the membranes only allow passage for the counterions. Enhancing the value of Λ is advantageous as this implies a lower electrical current and (at a fixed charging voltage) a reduced energy use. We demonstrate how, without the need to include IEMs, the charge efficiency can be increased to values close to the theoretical maximum of unity, by increasing the cell voltage during discharge, with only a small loss of salt adsorption capacity per cycle. In separate constant-current CDI experiments, where after some time the effluent salt concentration reaches a stable value, this value is reached earlier with increased discharge voltage. We compare the experimental results with predictions of porous electrode theory which includes an equilibrium Donnan electrical double layer model for salt adsorption in carbon micropores. Our results highlight the potential of modified operational schemes in CDI to increase charge efficiency and reduce energy use of water desalination.

摘要

电容去离子化(CDI)是一种使用多孔碳电极进行水脱盐的电化学方法。CDI中的一个关键参数是电荷效率Λ,它是CDI循环中盐吸附量与电荷量的比值。由于不仅抗衡离子会吸附到碳电极的孔隙中,同时同离子也会释放出来,CDI中Λ的值通常在0.5 - 0.8左右,远低于理论最大值1。为了提高Λ,可以采用离子交换膜(IEM)。使用膜时,Λ可以接近1,因为膜只允许抗衡离子通过。提高Λ的值是有利的,因为这意味着较低的电流以及(在固定充电电压下)降低的能量消耗。我们展示了如何在不使用IEM的情况下,通过在放电期间增加电池电压,将电荷效率提高到接近理论最大值1的值,且每个循环中盐吸附容量仅有少量损失。在单独的恒流CDI实验中,经过一段时间后流出液盐浓度达到稳定值,随着放电电压的增加,该稳定值会更早达到。我们将实验结果与多孔电极理论的预测进行了比较,该理论包括一个用于碳微孔中盐吸附的平衡唐南电双层模型。我们的结果突出了CDI中改进操作方案在提高电荷效率和降低水脱盐能量消耗方面的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验