Suppr超能文献

肥胖的空间聚集性:建成环境是否有影响?

The spatial clustering of obesity: does the built environment matter?

作者信息

Huang R, Moudon A V, Cook A J, Drewnowski A

机构信息

Interdisciplinary Program for the PhD in Urban Design and Planning, University of Washington, Seattle, WA, USA.

The Urban Form Lab (UFL), Department of Urban Design and Planning, University of Washington, Seattle, WA, USA.

出版信息

J Hum Nutr Diet. 2015 Dec;28(6):604-12. doi: 10.1111/jhn.12279. Epub 2014 Oct 3.

Abstract

BACKGROUND

Obesity rates in the USA show distinct geographical patterns. The present study used spatial cluster detection methods and individual-level data to locate obesity clusters and to analyse them in relation to the neighbourhood built environment.

METHODS

The 2008-2009 Seattle Obesity Study provided data on the self-reported height, weight, and sociodemographic characteristics of 1602 King County adults. Home addresses were geocoded. Clusters of high or low body mass index were identified using Anselin's Local Moran's I and a spatial scan statistic with regression models that searched for unmeasured neighbourhood-level factors from residuals, adjusting for measured individual-level covariates. Spatially continuous values of objectively measured features of the local neighbourhood built environment (SmartMaps) were constructed for seven variables obtained from tax rolls and commercial databases.

RESULTS

Both the Local Moran's I and a spatial scan statistic identified similar spatial concentrations of obesity. High and low obesity clusters were attenuated after adjusting for age, gender, race, education and income, and they disappeared once neighbourhood residential property values and residential density were included in the model.

CONCLUSIONS

Using individual-level data to detect obesity clusters with two cluster detection methods, the present study showed that the spatial concentration of obesity was wholly explained by neighbourhood composition and socioeconomic characteristics. These characteristics may serve to more precisely locate obesity prevention and intervention programmes.

摘要

背景

美国的肥胖率呈现出明显的地理模式。本研究采用空间聚类检测方法和个体层面的数据来定位肥胖聚集区,并分析其与邻里建成环境的关系。

方法

2008 - 2009年西雅图肥胖研究提供了1602名金县成年人的自我报告身高、体重和社会人口学特征数据。家庭住址进行了地理编码。使用安塞林局部莫兰指数(Anselin's Local Moran's I)和空间扫描统计量以及回归模型来识别高或低体重指数的聚类,该回归模型从残差中寻找未测量的邻里层面因素,并对测量的个体层面协变量进行调整。利用从税务记录和商业数据库获得的七个变量构建了当地邻里建成环境客观测量特征(智能地图,SmartMaps)的空间连续值。

结果

局部莫兰指数和空间扫描统计量都识别出了类似的肥胖空间聚集情况。在调整年龄、性别、种族、教育程度和收入后,高肥胖和低肥胖聚类有所减弱,而一旦将邻里住宅物业价值和居住密度纳入模型,它们就消失了。

结论

本研究使用个体层面的数据通过两种聚类检测方法来检测肥胖聚类,结果表明肥胖的空间聚集完全由邻里构成和社会经济特征所解释。这些特征可能有助于更精确地定位肥胖预防和干预项目。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验