Suppr超能文献

在没有中心粒的情况下进行皮质神经发生。

Cortical neurogenesis in the absence of centrioles.

作者信息

Insolera Ryan, Bazzi Hisham, Shao Wei, Anderson Kathryn V, Shi Song-Hai

机构信息

1] Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA. [2] Graduate Program in Neuroscience, Weill Cornell Medical College, New York, New York, USA. [3].

1] Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA. [2].

出版信息

Nat Neurosci. 2014 Nov;17(11):1528-35. doi: 10.1038/nn.3831. Epub 2014 Oct 5.

Abstract

Neuronal production in the mammalian cortex depends on extensive mitoses of radial glial progenitors (RGPs) residing in the ventricular zone (VZ). We examined the function of centrioles in RGPs during cortical neurogenesis in mice by conditional removal of SAS-4, a protein that is required for centriole biogenesis. SAS-4 deletion led to a progressive loss of centrioles, accompanied by RGP detachment from the VZ. Delocalized RGPs did not become outer subventricular zone RGPs (oRGs). Although they remained proliferative, ectopic RGPs, as well as those in the VZ, with a centrosomal deficit exhibited prolonged mitosis, p53 upregulation and apoptosis, resulting in neuronal loss and microcephaly. Simultaneous removal of p53 fully rescued RGP death and microcephaly, but not RGP delocalization and randomized mitotic spindle orientation. Our findings define the functions of centrioles in anchoring RGPs in the VZ and ensuring their efficient mitoses, and reveal the robust adaptability of RGPs in the developing cortex.

摘要

哺乳动物皮质中的神经元生成依赖于位于脑室区(VZ)的放射状胶质祖细胞(RGP)的大量有丝分裂。我们通过条件性去除SAS-4(一种中心粒生物发生所需的蛋白质)来研究小鼠皮质神经发生过程中RGP中中心粒的功能。SAS-4缺失导致中心粒逐渐丢失,同时RGP从VZ脱离。异位的RGP并没有变成外侧脑室下区RGP(oRG)。尽管异位RGP以及VZ中的RGP仍然具有增殖能力,但中心体缺陷的它们表现出有丝分裂延长、p53上调和细胞凋亡,导致神经元丢失和小头畸形。同时去除p53完全挽救了RGP死亡和小头畸形,但没有挽救RGP脱离和有丝分裂纺锤体方向随机化的问题。我们的研究结果确定了中心粒在将RGP锚定在VZ并确保其高效有丝分裂中的功能,并揭示了发育中的皮质中RGP强大的适应性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8631/4213237/957586e590dc/nihms627780f1.jpg

相似文献

1
Cortical neurogenesis in the absence of centrioles.
Nat Neurosci. 2014 Nov;17(11):1528-35. doi: 10.1038/nn.3831. Epub 2014 Oct 5.
2
Prolonged Mitosis of Neural Progenitors Alters Cell Fate in the Developing Brain.
Neuron. 2016 Jan 6;89(1):83-99. doi: 10.1016/j.neuron.2015.12.007.
3
Centrosome anchoring regulates progenitor properties and cortical formation.
Nature. 2020 Apr;580(7801):106-112. doi: 10.1038/s41586-020-2139-6. Epub 2020 Mar 25.
5
Oxidative stress regulates progenitor behavior and cortical neurogenesis.
Development. 2020 Mar 11;147(5):dev184150. doi: 10.1242/dev.184150.
6
Scratch2 modulates neurogenesis and cell migration through antagonism of bHLH proteins in the developing neocortex.
Cereb Cortex. 2014 Mar;24(3):754-72. doi: 10.1093/cercor/bhs356. Epub 2012 Nov 23.
8
Asymmetric centrosome inheritance maintains neural progenitors in the neocortex.
Nature. 2009 Oct 15;461(7266):947-55. doi: 10.1038/nature08435.

引用本文的文献

1
Early spinal cord development: from neural tube formation to neurogenesis.
Nat Rev Neurosci. 2025 Apr;26(4):195-213. doi: 10.1038/s41583-025-00906-5. Epub 2025 Feb 6.
2
The Gene Product STIL Is Essential for Dendritic Spine Formation.
Cells. 2025 Jan 7;14(2):62. doi: 10.3390/cells14020062.
3
Radial glia progenitor polarity in health and disease.
Front Cell Dev Biol. 2024 Oct 2;12:1478283. doi: 10.3389/fcell.2024.1478283. eCollection 2024.
5
Regulation of p53 by the mitotic surveillance/stopwatch pathway: implications in neurodevelopment and cancer.
Front Cell Dev Biol. 2024 Sep 27;12:1451274. doi: 10.3389/fcell.2024.1451274. eCollection 2024.
6
Developmental and tissue-specific roles of mammalian centrosomes.
FEBS J. 2025 Feb;292(4):709-726. doi: 10.1111/febs.17212. Epub 2024 Jun 27.
7
Mcph1, mutated in primary microcephaly, is also crucial for erythropoiesis.
EMBO Rep. 2024 May;25(5):2418-2440. doi: 10.1038/s44319-024-00123-8. Epub 2024 Apr 11.
8
Control of cell proliferation by memories of mitosis.
Science. 2024 Mar 29;383(6690):1441-1448. doi: 10.1126/science.add9528. Epub 2024 Mar 28.
9
The AP-2 complex interacts with γ-TuRC and regulates the proliferative capacity of neural progenitors.
Life Sci Alliance. 2023 Dec 12;7(2). doi: 10.26508/lsa.202302029. Print 2024 Feb.
10
P53 independent pathogenic mechanisms contribute to BubR1 microcephaly.
Front Cell Dev Biol. 2023 Oct 12;11:1282182. doi: 10.3389/fcell.2023.1282182. eCollection 2023.

本文引用的文献

1
Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo.
Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):E1491-500. doi: 10.1073/pnas.1400568111. Epub 2014 Mar 31.
2
Genetic causes of microcephaly and lessons for neuronal development.
Wiley Interdiscip Rev Dev Biol. 2013 Jul;2(4):461-78. doi: 10.1002/wdev.89. Epub 2012 Oct 4.
3
Centrosome amplification causes microcephaly.
Nat Cell Biol. 2013 Jul;15(7):731-40. doi: 10.1038/ncb2746. Epub 2013 May 12.
4
Disruption of mouse Cenpj, a regulator of centriole biogenesis, phenocopies Seckel syndrome.
PLoS Genet. 2012;8(11):e1003022. doi: 10.1371/journal.pgen.1003022. Epub 2012 Nov 15.
5
Spindle orientation in mammalian cerebral cortical development.
Curr Opin Neurobiol. 2012 Oct;22(5):737-46. doi: 10.1016/j.conb.2012.04.003. Epub 2012 May 2.
7
Clonal production and organization of inhibitory interneurons in the neocortex.
Science. 2011 Oct 28;334(6055):480-6. doi: 10.1126/science.1208884.
8
Regulating the transition from centriole to basal body.
J Cell Biol. 2011 May 2;193(3):435-44. doi: 10.1083/jcb.201101005.
9
A new subtype of progenitor cell in the mouse embryonic neocortex.
Nat Neurosci. 2011 May;14(5):555-61. doi: 10.1038/nn.2807. Epub 2011 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验