Gärtner Stefanie M K, Rathke Christina, Renkawitz-Pohl Renate, Awe Stephan
Fachbereich Biologie, Entwicklungsbiologie, Philipps-Universität Marburg.
Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg;
J Vis Exp. 2014 Sep 11(91):51868. doi: 10.3791/51868.
During spermatogenesis in mammals and in Drosophila melanogaster, male germ cells develop in a series of essential developmental processes. This includes differentiation from a stem cell population, mitotic amplification, and meiosis. In addition, post-meiotic germ cells undergo a dramatic morphological reshaping process as well as a global epigenetic reconfiguration of the germ line chromatin-the histone-to-protamine switch. Studying the role of a protein in post-meiotic spermatogenesis using mutagenesis or other genetic tools is often impeded by essential embryonic, pre-meiotic, or meiotic functions of the protein under investigation. The post-meiotic phenotype of a mutant of such a protein could be obscured through an earlier developmental block, or the interpretation of the phenotype could be complicated. The model organism Drosophila melanogaster offers a bypass to this problem: intact testes and even cysts of germ cells dissected from early pupae are able to develop ex vivo in culture medium. Making use of such cultures allows microscopic imaging of living germ cells in testes and of germ-line cysts. Importantly, the cultivated testes and germ cells also become accessible to pharmacological inhibitors, thereby permitting manipulation of enzymatic functions during spermatogenesis, including post-meiotic stages. The protocol presented describes how to dissect and cultivate pupal testes and germ-line cysts. Information on the development of pupal testes and culture conditions are provided alongside microscope imaging data of live testes and germ-line cysts in culture. We also describe a pharmacological assay to study post-meiotic spermatogenesis, exemplified by an assay targeting the histone-to-protamine switch using the histone acetyltransferase inhibitor anacardic acid. In principle, this cultivation method could be adapted to address many other research questions in pre- and post-meiotic spermatogenesis.
在哺乳动物和果蝇的精子发生过程中,雄性生殖细胞在一系列重要的发育过程中形成。这包括从干细胞群体的分化、有丝分裂扩增和减数分裂。此外,减数分裂后的生殖细胞会经历剧烈的形态重塑过程以及生殖系染色质的整体表观遗传重配置——组蛋白到鱼精蛋白的转换。使用诱变或其他遗传工具研究蛋白质在减数分裂后精子发生中的作用,常常会受到所研究蛋白质在胚胎、减数分裂前或减数分裂阶段的基本功能的阻碍。此类蛋白质突变体的减数分裂后表型可能会因早期发育阻滞而被掩盖,或者表型的解释可能会变得复杂。模式生物果蝇为解决这一问题提供了一条途径:从早期蛹中解剖出的完整睾丸甚至生殖细胞囊肿能够在培养基中离体发育。利用这种培养方法可以对睾丸中的活生殖细胞和生殖系囊肿进行显微成像。重要的是,培养的睾丸和生殖细胞也可用于药理学抑制剂研究,从而在精子发生过程中,包括减数分裂后阶段,对酶功能进行调控。本文介绍的方案描述了如何解剖和培养蛹期睾丸及生殖系囊肿。同时提供了蛹期睾丸发育和培养条件的信息以及培养中的活睾丸和生殖系囊肿的显微镜成像数据。我们还描述了一种用于研究减数分裂后精子发生的药理学检测方法,以使用组蛋白乙酰转移酶抑制剂漆树酸靶向组蛋白到鱼精蛋白转换的检测为例。原则上,这种培养方法可用于解决减数分裂前和减数分裂后精子发生中的许多其他研究问题。