Suppr超能文献

组蛋白 H4 乙酰化对于黑腹果蝇精子细胞核中从组蛋白到鱼精蛋白为基础的染色质结构的转变是必不可少的。

Histone H4 acetylation is essential to proceed from a histone- to a protamine-based chromatin structure in spermatid nuclei of Drosophila melanogaster.

机构信息

Philipps-Universität Marburg, Fachbereich Biologie, Entwicklungsbiologie, Marburg, Germany.

出版信息

Syst Biol Reprod Med. 2010 Feb;56(1):44-61. doi: 10.3109/19396360903490790.

Abstract

In humans, other mammals, and also in Drosophila, the paternal genome in the sperm is highly condensed and organized mainly in a protamine-based chromatin structure. However, the timing and mechanism of the switch from a histone- to the protamine-based chromatin configuration is still poorly understood. We therefore established Drosophila in vitro cultures of cysts with 64 synchronously developing spermatids genetically marked with histone H2AvD-RFP and ProtamineB-eGFP. Live cell imaging showed that the switch from H2AvD-RFP to Protamine-eGFP chromatin takes approximately five hours, with a short but clear overlap of the presence of both histones and protamines. Moreover, cultured pupal testes showed H4 hyperacetylation at the canoe stage shortly before histone removal; a feature previously observed in the intact animal. We then used TSA to inhibit histone deacetylation and found that premature hyperacetylation was already induced at the round nuclei stage of spermatids. However, this premature hyperacetylation did not lead to a premature switch to the protamine-based chromatin structure, showing that histone hyperacetylation is not the sole inducer of the histone to protamine switch. Importantly, we observed that inactivation of histone acetyltransferases by anacardic acid blocks further differentiation and thus prevents the degradation of histones and the switch to a protamine-based chromatin. Thus, we conclude that H4 hyperacetylation is an essential feature but not the sole inducer of the histone to protamine switch during spermiogenesis.

摘要

在人类、其他哺乳动物以及果蝇中,精子中的父系基因组高度浓缩,并主要组织成组蛋白为基础的染色质结构。然而,从组蛋白到鱼精蛋白为基础的染色质构型转换的时间和机制仍知之甚少。因此,我们建立了携带遗传标记有组蛋白 H2AvD-RFP 和鱼精蛋白 B-eGFP 的 64 个同步发育精母细胞的果蝇体外培养的胞囊。活细胞成像显示,从 H2AvD-RFP 到鱼精蛋白染色质的转换大约需要五个小时,两种组蛋白和鱼精蛋白的存在存在短暂但明显的重叠。此外,培养的蛹睾丸在组蛋白去除前的独木舟阶段显示出 H4 的高度乙酰化;这一特征之前在完整的动物中观察到过。然后,我们使用 TSA 抑制组蛋白去乙酰化,发现鱼精蛋白染色质的过早乙酰化在精母细胞的圆形核阶段就已经被诱导。然而,这种过早的乙酰化并没有导致向鱼精蛋白为基础的染色质结构的过早转换,表明组蛋白的过度乙酰化不是组蛋白到鱼精蛋白转换的唯一诱导因素。重要的是,我们观察到组蛋白乙酰转移酶的失活通过漆酚酸被阻断,从而阻止了进一步的分化,并阻止了组蛋白的降解和向鱼精蛋白为基础的染色质的转换。因此,我们得出结论,H4 的高度乙酰化是精子发生过程中组蛋白到鱼精蛋白转换的一个必要特征,但不是唯一的诱导因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验