The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Weijin Road No. 94, Tianjin 300071, PR China.
The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Weijin Road No. 94, Tianjin 300071, PR China.
Biosens Bioelectron. 2015 Feb 15;64:477-84. doi: 10.1016/j.bios.2014.09.057. Epub 2014 Sep 28.
In this paper, we innovatively immobilized few-walled carbon nanotubes (FWCNTs) perpendicularly on Au surface through conductive thionine instead of aminoalkanethiols so as to improve electrochemical properties. Because FWCNTs own smaller aggregates, stronger chemical corrosion resistant, and higher conductivity than single-walled carbon nanotubes (SWCNTs), and thionine is a good electron transfer mediator can provide amino and sulfhydryl groups playing the same function as insulating aminoalkanethiols. The strategy for obtaining perpendicularly aligned FWCNTs (p-FWCNTs) is electrostatically assembled thionine and 11-amino-n-undecanethiol (AUT) on Au surface via Au-S bond to provide amino groups for covalently combining terminus-carboxylated FWCNTs, we confirmed and compared the results by AFM, Raman spectroscopy and electrochemical methods. In order to prove the constructed basement has excellent electrochemical properties can provide a good platform for sensors fabrication, we developed a novel non-enzymatic hydrogen peroxide (H2O2) sensor by electrodepositing Pt nanoparticles (PtNPs) on p-FWCNTs/Thionine/Au electrode surface, and verified the result by TEM, EDX and electrochemical techniques. Furthermore, polyallylamine (PAA) and poly(vinyl sulfate) (PVS) permselective layer, poly(diallyldimethylammonium) (PDDA) and glucose oxidase (GOx) multilayer films were layer-by-layer self-assembled on p-FWCNTs/Thionine/Au surface to fabricate a glucose biosensor. Either the non-enzymatic H2O2 sensor or the enzyme-based glucose biosensor showed good sensitivity, selectivity, reproducibility and stability, both them had been applied for biological sample analysis with satisfactory results. The results show that the p-FWCNTs/Thionine/Au electrode can work as an ideal platform for the development of highly sensitive sensors, coupled with p-FWCNTs are rich in functional groups could be used for fabricating diverse sensors.
在本文中,我们创新性地通过导电噻吩啉而非氨基烷硫醇将少壁碳纳米管(FWCNTs)垂直固定在 Au 表面上,以改善电化学性能。由于 FWCNTs 比单壁碳纳米管(SWCNTs)具有更小的聚集体、更强的耐化学腐蚀性和更高的导电性,并且噻吩啉是一种良好的电子转移介体,可以提供氨基和巯基,起到与绝缘氨基烷硫醇相同的作用。获得垂直排列的 FWCNTs(p-FWCNTs)的策略是通过 Au-S 键静电组装噻吩啉和 11-氨基-1-十一硫醇(AUT)在 Au 表面上,以提供氨基用于共价结合末端羧基化的 FWCNTs,我们通过 AFM、拉曼光谱和电化学方法确认和比较了结果。为了证明构建的基底具有优异的电化学性能,可以为传感器制造提供良好的平台,我们通过在 p-FWCNTs/噻吩啉/Au 电极表面电沉积 Pt 纳米粒子(PtNPs),开发了一种新型非酶过氧化氢(H2O2)传感器,并通过 TEM、EDX 和电化学技术验证了结果。此外,聚烯丙胺(PAA)和聚(硫酸乙烯酯)(PVS)选择性渗透层、聚二烯丙基二甲基氯化铵(PDDA)和葡萄糖氧化酶(GOx)多层膜通过层层自组装在 p-FWCNTs/噻吩啉/Au 表面上,用于制造葡萄糖生物传感器。非酶 H2O2 传感器或基于酶的葡萄糖生物传感器都表现出良好的灵敏度、选择性、重现性和稳定性,两者都已用于生物样品分析,结果令人满意。结果表明,p-FWCNTs/噻吩啉/Au 电极可以作为开发高灵敏度传感器的理想平台,并且 p-FWCNTs 富含官能团,可用于制造各种传感器。