Suppr超能文献

多功能、刺激响应型纳米颗粒给药系统。

Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery.

机构信息

1] Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 140 The Fenway, Room 214, 360 Huntington Avenue, Boston, Massachusetts 02115, USA. [2] Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

出版信息

Nat Rev Drug Discov. 2014 Nov;13(11):813-27. doi: 10.1038/nrd4333. Epub 2014 Oct 7.

Abstract

The use of nanoparticulate pharmaceutical drug delivery systems (NDDSs) to enhance the in vivo effectiveness of drugs is now well established. The development of multifunctional and stimulus-sensitive NDDSs is an active area of current research. Such NDDSs can have long circulation times, target the site of the disease and enhance the intracellular delivery of a drug. This type of NDDS can also respond to local stimuli that are characteristic of the pathological site by, for example, releasing an entrapped drug or shedding a protective coating, thus facilitating the interaction between drug-loaded nanocarriers and target cells or tissues. In addition, imaging contrast moieties can be attached to these carriers to track their real-time biodistribution and accumulation in target cells or tissues. Here, I highlight recent developments with multifunctional and stimuli-sensitive NDDSs and their therapeutic potential for diseases including cancer, cardiovascular diseases and infectious diseases.

摘要

纳米颗粒药物传递系统(NDDS)被广泛应用于增强药物的体内疗效。多功能和刺激响应型 NDDS 的开发是当前研究的活跃领域。此类 NDDS 具有较长的循环时间,能够靶向疾病部位并增强药物的细胞内传递。这种 NDDS 还可以通过释放包封药物或脱落保护性涂层等方式,对疾病部位特有的局部刺激做出响应,从而促进载药纳米载体与靶细胞或组织之间的相互作用。此外,还可以将成像对比基团附着到这些载体上,以跟踪其在靶细胞或组织中的实时生物分布和积累情况。本文重点介绍了多功能和刺激响应型 NDDS 的最新进展及其在癌症、心血管疾病和传染病等疾病治疗方面的潜在应用。

相似文献

1
Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery.
Nat Rev Drug Discov. 2014 Nov;13(11):813-27. doi: 10.1038/nrd4333. Epub 2014 Oct 7.
3
Recent developments in lipid-based pharmaceutical nanocarriers.
Front Biosci (Landmark Ed). 2011 Jan 1;16(4):1388-412. doi: 10.2741/3795.
4
Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers.
Adv Drug Deliv Rev. 2008 Mar 1;60(4-5):548-58. doi: 10.1016/j.addr.2007.10.008. Epub 2007 Nov 28.
6
Drug targeting to cancer by nanoparticles surface functionalized with special biomolecules.
Curr Med Chem. 2012;19(19):3188-95. doi: 10.2174/092986712800784720.
7
Recent Progress in Nanostructured Smart Drug Delivery Systems for Cancer Therapy: A Review.
ACS Appl Bio Mater. 2022 Mar 21;5(3):971-1012. doi: 10.1021/acsabm.2c00002. Epub 2022 Feb 28.
8
Emerging potential of stimulus-responsive nanosized anticancer drug delivery systems for systemic applications.
Arch Pharm Res. 2018 Feb;41(2):111-129. doi: 10.1007/s12272-017-0995-x. Epub 2017 Dec 6.
9
Multifunctional nanocarriers.
Adv Drug Deliv Rev. 2006 Dec 1;58(14):1532-55. doi: 10.1016/j.addr.2006.09.009. Epub 2006 Sep 28.
10
Anticancer drug delivery with nanoparticles.
In Vivo. 2006 Nov-Dec;20(6A):697-701.

引用本文的文献

1
Effects of Gold Nanoparticles on the Antioxidant Power of Gallic Acid: A Computational Investigation Using a Cluster Model.
ACS Omega. 2025 Aug 18;10(34):38640-38652. doi: 10.1021/acsomega.5c03489. eCollection 2025 Sep 2.
3
Unleashing the anti-tumor angiogenic potential of nano-formulated orientin: In Silico, In Vitro, and In Ovo studies.
PLoS One. 2025 Jul 18;20(7):e0322564. doi: 10.1371/journal.pone.0322564. eCollection 2025.
4
Role of nanomedicines in lung cancer treatment and diagnosis: opportunities and challenges.
Med Oncol. 2025 Jun 30;42(8):305. doi: 10.1007/s12032-025-02862-7.
5
Next-Generation Drug Delivery for Neurotherapeutics: The Promise of Stimuli-Triggered Nanocarriers.
Biomedicines. 2025 Jun 13;13(6):1464. doi: 10.3390/biomedicines13061464.
6
Smart injectable hydrogels for periodontal regeneration: Recent advancements in biomaterials and biofabrication strategies.
Mater Today Bio. 2025 May 11;32:101855. doi: 10.1016/j.mtbio.2025.101855. eCollection 2025 Jun.
8
The molecular mechanism and therapeutic landscape of copper and cuproptosis in cancer.
Signal Transduct Target Ther. 2025 May 9;10(1):149. doi: 10.1038/s41392-025-02192-0.
9
Nanocarriers for cutting-edge cancer immunotherapies.
J Transl Med. 2025 Apr 16;23(1):447. doi: 10.1186/s12967-025-06435-0.

本文引用的文献

2
Hyperthermia-mediated local drug delivery by a bubble-generating liposomal system for tumor-specific chemotherapy.
ACS Nano. 2014 May 27;8(5):5105-15. doi: 10.1021/nn501162x. Epub 2014 Apr 21.
3
A unique squalenoylated and nonpegylated doxorubicin nanomedicine with systemic long-circulating properties and anticancer activity.
Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):E217-26. doi: 10.1073/pnas.1313459110. Epub 2014 Jan 2.
5
Stimuli-responsive nanocarriers for drug delivery.
Nat Mater. 2013 Nov;12(11):991-1003. doi: 10.1038/nmat3776.
7
Multifunctional receptor-targeted nanocomplexes for the delivery of therapeutic nucleic acids to the brain.
Biomaterials. 2013 Dec;34(36):9190-200. doi: 10.1016/j.biomaterials.2013.07.081. Epub 2013 Aug 12.
8
Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer.
Int J Mol Sci. 2013 Jul 31;14(8):15910-30. doi: 10.3390/ijms140815910.
10
pH-responsive complexes using prefunctionalized polymers for synchronous delivery of doxorubicin and siRNA to cancer cells.
Biomaterials. 2013 Jul;34(20):4849-59. doi: 10.1016/j.biomaterials.2013.03.018. Epub 2013 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验