Saen-Oon Suwipa, Lee Soon Goo, Jez Joseph M, Guallar Victor
From the Joint Barcelona Supercomputing Center-Centre for Genomic Regulation-Institute for Research in Biomedicine Research Program, Carrer de Jordi Girona 29, 08034 Barcelona, Spain.
the Department of Biology, Washington University, St. Louis, Missouri 63130, and.
J Biol Chem. 2014 Dec 5;289(49):33815-25. doi: 10.1074/jbc.M114.611319. Epub 2014 Oct 6.
The phosphobase methylation pathway catalyzed by the phosphoethanolamine methyltransferase in Plasmodium falciparum (PfPMT), the malaria parasite, offers an attractive target for anti-parasitic drug development. PfPMT methylates phosphoethanolamine (pEA) to phosphocholine for use in membrane biogenesis. Quantum mechanics and molecular mechanics (QM/MM) calculations tested the proposed reaction mechanism for methylation of pEA involving the previously identified Tyr-19-His-132 dyad, which indicated an energetically unfavorable mechanism. Instead, the QM/MM calculations suggested an alternative mechanism involving Asp-128. The reaction coordinate involves the stepwise transfer of a proton to Asp-128 via a bridging water molecule followed by a typical Sn2-type methyl transfer from S-adenosylmethionine to pEA. Functional analysis of the D128A, D128E, D128Q, and D128N PfPMT mutants shows a loss of activity with pEA but not with the final substrate of the methylation pathway. X-ray crystal structures of the PfPMT-D128A mutant in complex with S-adenosylhomocysteine and either pEA or phosphocholine reveal how mutation of Asp-128 disrupts a hydrogen bond network in the active site. The combined QM/MM, biochemical, and structural studies identify a key role for Asp-128 in the initial step of the phosphobase methylation pathway in Plasmodium and provide molecular insight on the evolution of multiple activities in the active site of the PMT.
由疟原虫恶性疟原虫(PfPMT)中的磷酸乙醇胺甲基转移酶催化的磷酸碱基甲基化途径,为抗寄生虫药物开发提供了一个有吸引力的靶点。PfPMT将磷酸乙醇胺(pEA)甲基化为磷酸胆碱,用于膜生物合成。量子力学和分子力学(QM/MM)计算测试了涉及先前鉴定的Tyr-19-His-132二元组的pEA甲基化反应机制,结果表明该机制在能量上不利。相反,QM/MM计算提出了一种涉及Asp-128的替代机制。反应坐标包括通过桥连水分子将质子逐步转移到Asp-128,随后是从S-腺苷甲硫氨酸到pEA的典型Sn2型甲基转移。对D128A、D128E、D128Q和D128N PfPMT突变体的功能分析表明,它们对pEA失去活性,但对甲基化途径的最终底物没有失去活性。PfPMT-D128A突变体与S-腺苷同型半胱氨酸以及pEA或磷酸胆碱复合物的X射线晶体结构揭示了Asp-128的突变如何破坏活性位点中的氢键网络。结合QM/MM、生化和结构研究,确定了Asp-128在疟原虫磷酸碱基甲基化途径初始步骤中的关键作用,并为PMT活性位点多种活性的进化提供了分子见解。