From the Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130.
From the Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
J Biol Chem. 2017 Dec 29;292(52):21690-21702. doi: 10.1074/jbc.RA117.000106. Epub 2017 Oct 30.
Phosphocholine (pCho) is a precursor for phosphatidylcholine and osmoprotectants in plants. In plants, synthesis of pCho relies on the phosphobase methylation pathway. Phosphoethanolamine methyltransferase (PMT) catalyzes the triple methylation of phosphoethanolamine (pEA) to pCho. The plant PMTs are di-domain methyltransferases that divide the methylation of pEA in one domain from subsequent methylations in the second domain. To understand the molecular basis of this architecture, we examined the biochemical properties of three PMTs (AtPMT1-3) and determined the X-ray crystal structures of AtPMT1 and AtPMT2. Although each isoform synthesizes pCho from pEA, their physiological roles differ with AtPMT1 essential for normal growth and salt tolerance, whereas AtPMT2 and AtPMT3 overlap functionally. The structures of AtPMT1 and AtPMT2 reveal unique features in each methyltransferase domain, including active sites that use different chemical mechanisms for phosphobase methylation. These structures also show how rearrangements in both the active sites and the di-domain linker form catalytically competent active sites and provide insight on the evolution of the PMTs in plants, nematodes, and apicomplexans. Connecting conformational changes with catalysis in modular enzymes, like the PMT, provides new insights on interdomain communication in biosynthetic systems.
磷酸胆碱 (pCho) 是植物中磷脂酰胆碱和渗透保护剂的前体。在植物中,pCho 的合成依赖于磷酸碱基甲基化途径。磷酸乙醇胺甲基转移酶 (PMT) 催化磷酸乙醇胺 (pEA) 的三重甲基化生成 pCho。植物 PMTs 是二结构域甲基转移酶,将 pEA 的甲基化在一个结构域中进行,而随后的甲基化在第二个结构域中进行。为了了解这种结构的分子基础,我们研究了三种 PMTs (AtPMT1-3) 的生化特性,并确定了 AtPMT1 和 AtPMT2 的 X 射线晶体结构。尽管每个同工酶都能从 pEA 合成 pCho,但它们的生理作用不同,AtPMT1 对正常生长和耐盐性至关重要,而 AtPMT2 和 AtPMT3 在功能上重叠。AtPMT1 和 AtPMT2 的结构揭示了每个甲基转移酶结构域中的独特特征,包括使用不同化学机制进行磷酸碱基甲基化的活性位点。这些结构还展示了活性位点和二结构域接头的重排如何形成催化活性的活性位点,并为植物、线虫和顶复门生物中 PMTs 的进化提供了见解。将构象变化与模块化酶(如 PMT)中的催化作用联系起来,为生物合成系统中的域间通讯提供了新的见解。