Suppr超能文献

一种非负矩阵分解的快速算法及其收敛性。

A fast algorithm for nonnegative matrix factorization and its convergence.

出版信息

IEEE Trans Neural Netw Learn Syst. 2014 Oct;25(10):1855-63. doi: 10.1109/TNNLS.2013.2296627.

Abstract

Nonnegative matrix factorization (NMF) has recently become a very popular unsupervised learning method because of its representational properties of factors and simple multiplicative update algorithms for solving the NMF. However, for the common NMF approach of minimizing the Euclidean distance between approximate and true values, the convergence of multiplicative update algorithms has not been well resolved. This paper first discusses the convergence of existing multiplicative update algorithms. We then propose a new multiplicative update algorithm for minimizing the Euclidean distance between approximate and true values. Based on the optimization principle and the auxiliary function method, we prove that our new algorithm not only converges to a stationary point, but also does faster than existing ones. To verify our theoretical results, the experiments on three data sets have been conducted by comparing our proposed algorithm with other existing methods.

摘要

非负矩阵分解 (NMF) 由于其因子的表示性质和用于求解 NMF 的简单乘法更新算法,最近成为一种非常流行的无监督学习方法。然而,对于常用的通过最小化近似值和真实值之间的欧几里得距离来实现 NMF 的方法,乘法更新算法的收敛性尚未得到很好的解决。本文首先讨论了现有乘法更新算法的收敛性。然后,我们提出了一种新的乘法更新算法,用于最小化近似值和真实值之间的欧几里得距离。基于优化原理和辅助函数方法,我们证明了我们的新算法不仅可以收敛到一个稳定点,而且比现有的算法更快。为了验证我们的理论结果,通过将我们提出的算法与其他现有方法进行比较,在三个数据集上进行了实验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验