Fürstenberg-Hägg Joel, Zagrobelny Mika, Jørgensen Kirsten, Vogel Heiko, Møller Birger Lindberg, Bak Søren
Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center "Plant Plasticity", Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark.
Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany.
PLoS One. 2014 Oct 9;9(10):e108745. doi: 10.1371/journal.pone.0108745. eCollection 2014.
The evolution of sequestration (uptake and accumulation) relative to de novo biosynthesis of chemical defense compounds is poorly understood, as is the interplay between these two strategies. The Burnet moth Zygaena filipendulae (Lepidoptera) and its food-plant Lotus corniculatus (Fabaceae) poses an exemplary case study of these questions, as Z. filipendulae belongs to the only insect family known to both de novo biosynthesize and sequester the same defense compounds directly from its food-plant. Z. filipendulae and L. corniculatus both contain the two cyanogenic glucosides linamarin and lotaustralin, which are defense compounds that can be hydrolyzed to liberate toxic hydrogen cyanide. The overall amounts and ratios of linamarin and lotaustralin in Z. filipendulae are tightly regulated, and only to a low extent reflect the ratio in the ingested food-plant. We demonstrate that Z. filipendulae adjusts the de novo biosynthesis of CNglcs by regulation at both the transcriptional and protein level depending on food plant composition. Ultimately this ensures that the larva saves energy and nitrogen while maintaining an effective defense system to fend off predators. By using in situ PCR and immunolocalization, the biosynthetic pathway was resolved to the larval fat body and integument, which infers rapid replenishment of defense compounds following an encounter with a predator. Our study supports the hypothesis that de novo biosynthesis of CNglcs in Z. filipendulae preceded the ability to sequester, and facilitated a food-plant switch to cyanogenic plants, after which sequestration could evolve. Preservation of de novo biosynthesis allows fine-tuning of the amount and composition of CNglcs in Z. filipendulae.
相对于化学防御化合物的从头生物合成,隔离(摄取和积累)的进化过程仍知之甚少,这两种策略之间的相互作用也是如此。黄斑蜂蛾Zygaena filipendulae(鳞翅目)及其食草植物百脉根Lotus corniculatus(豆科)为这些问题提供了一个典型的案例研究,因为黄斑蜂蛾属于已知的唯一既能从头生物合成又能直接从其食草植物中隔离相同防御化合物的昆虫家族。黄斑蜂蛾和百脉根都含有两种生氰糖苷——亚麻苦苷和百脉根苷,它们是可以水解以释放有毒氰化氢的防御化合物。黄斑蜂蛾体内亚麻苦苷和百脉根苷的总量及比例受到严格调控,仅在很低程度上反映所摄入食草植物中的比例。我们证明,黄斑蜂蛾会根据食草植物的组成,在转录和蛋白质水平上进行调控,从而调整生氰糖苷的从头生物合成。最终,这确保了幼虫在维持有效的防御系统以抵御捕食者的同时节省能量和氮。通过原位PCR和免疫定位,确定了生物合成途径在幼虫脂肪体和体表,这表明在遭遇捕食者后防御化合物能迅速补充。我们的研究支持了这样的假设:黄斑蜂蛾中生氰糖苷的从头生物合成先于其隔离能力,并促进了食草植物向含氰植物的转变,此后隔离能力才得以进化。保留从头生物合成能力使得黄斑蜂蛾能够对生氰糖苷的数量和组成进行微调。