Suppr超能文献

氰苷生物合成基因的基因组聚类有助于在百脉根中鉴定它们,并提示这种化学防御途径的重复进化。

Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway.

机构信息

Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark.

出版信息

Plant J. 2011 Oct;68(2):273-86. doi: 10.1111/j.1365-313X.2011.04685.x. Epub 2011 Jul 26.

Abstract

Cyanogenic glucosides are amino acid-derived defence compounds found in a large number of vascular plants. Their hydrolysis by specific β-glucosidases following tissue damage results in the release of hydrogen cyanide. The cyanogenesis deficient1 (cyd1) mutant of Lotus japonicus carries a partial deletion of the CYP79D3 gene, which encodes a cytochrome P450 enzyme that is responsible for the first step in cyanogenic glucoside biosynthesis. The genomic region surrounding CYP79D3 contains genes encoding the CYP736A2 protein and the UDP-glycosyltransferase UGT85K3. In combination with CYP79D3, these genes encode the enzymes that constitute the entire pathway for cyanogenic glucoside biosynthesis. The biosynthetic genes for cyanogenic glucoside biosynthesis are also co-localized in cassava (Manihot esculenta) and sorghum (Sorghum bicolor), but the three gene clusters show no other similarities. Although the individual enzymes encoded by the biosynthetic genes in these three plant species are related, they are not necessarily orthologous. The independent evolution of cyanogenic glucoside biosynthesis in several higher plant lineages by the repeated recruitment of members from similar gene families, such as the CYP79s, is a likely scenario.

摘要

氰苷是在大量维管植物中发现的氨基酸衍生防御化合物。它们在组织损伤后被特定的β-葡萄糖苷酶水解,导致氢氰酸的释放。日本百脉根(Lotus japonicus)的氰苷缺陷 1 (cyd1)突变体携带 CYP79D3 基因的部分缺失,该基因编码一种细胞色素 P450 酶,负责氰苷生物合成的第一步。CYP79D3 基因周围的基因组区域包含编码 CYP736A2 蛋白和 UDP-糖基转移酶 UGT85K3 的基因。与 CYP79D3 结合,这些基因编码构成氰苷生物合成完整途径的酶。氰苷生物合成的生物合成基因也在木薯(Manihot esculenta)和高粱(Sorghum bicolor)中共同定位,但这三个基因簇没有其他相似之处。尽管这三个植物物种中生物合成基因编码的单个酶是相关的,但它们不一定是同源的。氰苷生物合成在几个高等植物谱系中的独立进化可能是通过从类似的基因家族(如 CYP79s)中重复招募成员来实现的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验