Boix Estefania, Puddu Valeria, Perry Carole C
Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
Dalton Trans. 2014 Nov 28;43(44):16902-10. doi: 10.1039/c4dt01974a.
We demonstrate the use of silk based proteins to control the particle/crystallite size during GeO2 formation, using a bio-mimetic approach at circumneutral pH and ambient temperature. Multicrystalline GeO2 was prepared from germanium tetraethoxide (TEOG) in the presence of different silk-based proteins: Bombyx mori silk (native silk) and two chimeric proteins prepared by linking a germania binding peptide (Ge28: HATGTHGLSLSH) with Bombyx mori silk via chemical coupling at different peptide loadings (silk-Ge28 10% and silk-Ge28 50%). The mineralisation activity of the silk-based proteins was compared with that of peptide Ge28 as a control system. GeO2 mineralisation was investigated in water and in citric acid/bis-tris propane buffer at pH 6. Morphology, particle size, crystallinity, water and organic content of the materials obtained were analysed to study the effect of added biomolecules and mineralisation environment on material properties. In the presence of silk additives well-defined cube-shape hybrid materials composed of hexagonal germania and up to ca. 5 wt% organic content were obtained. The cubic particles ranged from 0.4 to 1.4 μm in size and were composed of crystalline domains in the range 35-106 nm depending on the additive used and synthesis conditions. The organic material incorporated in the mineral did not appear to affect the unit cell dimensions. The silk and chimeric proteins in water promote material formation and crystal growth, possibly via an effective ion-channelling mechanism, however further studies are needed to assert to what extent the presence of the silk impacts on nucleation and growth stages. The germania binding peptide alone did not have any significant effect on reaction rate, yield or the material's properties compared to the blank. Interestingly, the peptide content in the silk chimeras tested did not affect mineralisation. The presence of buffer inhibited mineral condensation rate and yield. The use of silk-based biomolecules allows control of crystallite/particle size of hybrid materials opening up opportunities for bio-inspired approaches to be applied for the synthesis of functional germania based devices and materials.
我们展示了使用基于丝的蛋白质,通过在环境温度和接近中性的pH值下采用仿生方法,来控制GeO₂形成过程中的颗粒/微晶尺寸。多晶GeO₂是在不同的基于丝的蛋白质存在下,由四乙氧基锗(TEOG)制备而成:家蚕丝(天然丝)以及两种通过在不同肽负载量下将锗结合肽(Ge28:HATGTHGLSLSH)与家蚕丝通过化学偶联而制备的嵌合蛋白质(丝-Ge28 10%和丝-Ge28 50%)。将基于丝的蛋白质的矿化活性与作为对照体系的肽Ge28的矿化活性进行了比较。在水和pH值为6的柠檬酸/双三羟甲基氨基甲烷缓冲液中研究了GeO₂矿化。分析了所获得材料的形态、粒径、结晶度、水和有机含量,以研究添加的生物分子和矿化环境对材料性能的影响。在丝添加剂存在的情况下,获得了由六方晶型的锗以及高达约5 wt%有机含量组成的形状明确的立方体形杂化材料。立方颗粒尺寸范围为0.4至1.4μm,并且根据所使用的添加剂和合成条件,由尺寸在35 - 106nm范围内的结晶域组成。掺入矿物中的有机材料似乎并未影响晶胞尺寸。水中的丝和嵌合蛋白质可能通过有效的离子通道机制促进材料形成和晶体生长,然而需要进一步研究来确定丝的存在对成核和生长阶段的影响程度。与空白相比,单独的锗结合肽对反应速率、产率或材料性能没有任何显著影响。有趣的是,所测试的丝嵌合体中的肽含量并未影响矿化。缓冲液的存在抑制了矿物凝聚速率和产率。基于丝的生物分子的使用能够控制杂化材料的微晶/颗粒尺寸,为受生物启发的方法应用于合成功能性锗基器件和材料开辟了机会。