Biomolecular and Materials Interface Research Group, School of Science and Technology, Nottingham Trent University, Clifton lane, Nottingham NG11 8NS, United Kingdom.
Biomacromolecules. 2012 Mar 12;13(3):683-90. doi: 10.1021/bm201555c. Epub 2012 Feb 3.
Novel protein chimeras constituted of "silk" and a silica-binding peptide (KSLSRHDHIHHH) were synthesized by genetic or chemical approaches and their influence on silica-silk based chimera composite formation evaluated. Genetic chimeras were constructed from 6 or 15 repeats of the 32 amino acid consensus sequence of Nephila clavipes spider silk (SGRGGLGGQG AGAAAAAGGA GQGGYGGLGSQG) to which one silica binding peptide was fused at the N terminus. For the chemical chimera, 28 equiv of the silica binding peptide were chemically coupled to natural Bombyx mori silk after modification of tyrosine groups by diazonium coupling and EDC/NHS activation of all acid groups. After silica formation under mild, biomaterial-compatible conditions, the effect of peptide addition on the properties of the silk and chimeric silk-silica composite materials was explored. The composite biomaterial properties could be related to the extent of silica condensation and to the higher number of silica binding sites in the chemical chimera as compared with the genetically derived variants. In all cases, the structure of the protein/chimera in solution dictated the type of composite structure that formed with the silica deposition process having little effect on the secondary structural composition of the silk-based materials. Similarly to our study of genetic silk based chimeras containing the R5 peptide (SSKKSGSYSGSKGSKRRIL), the role of the chimeras (genetic and chemical) used in the present study resided more in aggregation and scaffolding than in the catalysis of condensation. The variables of peptide identity, silk construct (number of consensus repeats or silk source), and approach to synthesis (genetic or chemical) can be used to "tune" the properties of the composite materials formed and is a general approach that can be used to prepare a range of materials for biomedical and sensor-based applications.
新型蛋白嵌合体由“丝”和硅结合肽(KSLSRHDHIHHH)组成,可通过遗传或化学方法合成,并评估其对硅-丝基嵌合体复合材料形成的影响。遗传嵌合体由 6 或 15 个重复的 Nephila clavipes 蜘蛛丝([SGRGGLGGQG AGAAAAAGGA GQGGYGGLGSQG](n)的 32 个氨基酸共识序列组成,在 N 末端融合了一个硅结合肽。对于化学嵌合体,在天然 Bombyx mori 丝上修饰酪氨酸基团通过重氮偶联和所有酸基团的 EDC/NHS 活化后,将 28 当量的硅结合肽化学偶联。在温和、生物相容性好的条件下形成硅后,研究了肽的添加对丝和嵌合丝-硅复合材料性质的影响。与遗传衍生变体相比,复合材料的性质可能与硅缩合的程度以及化学嵌合体中更多的硅结合位点有关。在所有情况下,溶液中蛋白质/嵌合体的结构决定了与硅沉积过程形成的复合材料结构类型,而对基于丝的材料的二级结构组成几乎没有影响。与我们对含有 R5 肽的遗传丝基嵌合体的研究类似(SSKKSGSYSGSKGSKRRIL),本研究中使用的嵌合体(遗传和化学)的作用更多地在于聚集和支架,而不是缩合的催化。肽的身份、丝结构(共识重复数或丝源)和合成方法(遗传或化学)等变量可用于“调整”形成的复合材料的性质,这是一种通用方法,可用于制备一系列用于生物医学和基于传感器的应用的材料。