Xie Xianchao, Kou S C, Brown Lawrence D
Harvard University.
University of Pennsylvania.
J Am Stat Assoc. 2012 Dec;107(500):1465-1479. doi: 10.1080/01621459.2012.728154.
Hierarchical models are extensively studied and widely used in statistics and many other scientific areas. They provide an effective tool for combining information from similar resources and achieving partial pooling of inference. Since the seminal work by James and Stein (1961) and Stein (1962), shrinkage estimation has become one major focus for hierarchical models. For the homoscedastic normal model, it is well known that shrinkage estimators, especially the James-Stein estimator, have good risk properties. The heteroscedastic model, though more appropriate for practical applications, is less well studied, and it is unclear what types of shrinkage estimators are superior in terms of the risk. We propose in this paper a class of shrinkage estimators based on Stein's unbiased estimate of risk (SURE). We study asymptotic properties of various common estimators as the number of means to be estimated grows ( → ∞). We establish the asymptotic optimality property for the SURE estimators. We then extend our construction to create a class of semi-parametric shrinkage estimators and establish corresponding asymptotic optimality results. We emphasize that though the form of our SURE estimators is partially obtained through a normal model at the sampling level, their optimality properties do not heavily depend on such distributional assumptions. We apply the methods to two real data sets and obtain encouraging results.
分层模型在统计学和许多其他科学领域得到了广泛的研究和应用。它们为整合来自相似资源的信息以及实现部分推断合并提供了一种有效工具。自詹姆斯和斯坦因(1961年)以及斯坦因(1962年)的开创性工作以来,收缩估计已成为分层模型的一个主要研究重点。对于同方差正态模型,众所周知,收缩估计量,尤其是詹姆斯 - 斯坦因估计量,具有良好的风险性质。异方差模型虽然更适合实际应用,但研究较少,并且不清楚哪种类型的收缩估计量在风险方面更具优势。我们在本文中提出了一类基于斯坦因风险无偏估计(SURE)的收缩估计量。我们研究了随着待估计均值数量增加(→∞)时各种常见估计量的渐近性质。我们建立了SURE估计量的渐近最优性性质。然后,我们扩展我们的构造以创建一类半参数收缩估计量,并建立相应的渐近最优性结果。我们强调,尽管我们的SURE估计量的形式部分是通过抽样水平的正态模型获得的,但其最优性性质并不严重依赖于此类分布假设。我们将这些方法应用于两个实际数据集并获得了令人鼓舞的结果。