Department of Statistics, University of Manitoba, Winnipeg, Canada.
Department of Statistics, University of Tabriz, Tabriz, Iran.
Stat Med. 2019 Sep 30;38(22):4310-4322. doi: 10.1002/sim.8297. Epub 2019 Jul 17.
Gamma regression is applied in several areas such as life testing, forecasting cancer incidences, genomics, rainfall prediction, experimental designs, and quality control. Gamma regression models allow for a monotone and no constant hazard in survival models. Owing to the broad applicability of gamma regression, we propose some novel and improved methods to estimate the coefficients of gamma regression model. We combine the unrestricted maximum likelihood (ML) estimators and the estimators that are restricted by linear hypothesis, and we present Stein-type shrinkage estimators (SEs). We then develop an asymptotic theory for SEs and obtain their asymptotic quadratic risks. In addition, we conduct Monte Carlo simulations to study the performance of the estimators in terms of their simulated relative efficiencies. It is evident from our studies that the proposed SEs outperform the usual ML estimators. Furthermore, some tabular and graphical representations are given as proofs of our assertions. This study is finally ended by appraising the performance of our estimators for a real prostate cancer data.
伽马回归在多个领域得到了应用,如寿命测试、癌症发病率预测、基因组学、降雨预测、实验设计和质量控制。伽马回归模型允许生存模型中的单调和无常数风险。由于伽马回归的广泛适用性,我们提出了一些新的改进方法来估计伽马回归模型的系数。我们结合了无约束最大似然(ML)估计量和受线性假设约束的估计量,并提出了 Stein 型收缩估计量(SEs)。然后,我们为 SEs 发展了一个渐近理论,并得到了它们的渐近二次风险。此外,我们进行了蒙特卡罗模拟,以研究估计量在模拟相对效率方面的性能。从我们的研究中可以明显看出,所提出的 SEs 优于常用的 ML 估计量。此外,还给出了一些表格和图形表示作为我们断言的证明。最后,我们通过评估真实前列腺癌数据的估计量的性能来结束本研究。