Brehm N, Bez F, Carlsson T, Kern B, Gispert S, Auburger G, Cenci M A
Experimental Neurology, Department of Neurology, Medical School, Goethe University Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany.
Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, BMC F11, SE-221 84, Lund, Sweden.
Mol Neurobiol. 2015 Dec;52(3):1152-1164. doi: 10.1007/s12035-014-8911-6. Epub 2014 Oct 12.
Alpha-synuclein (SNCA) protein aggregation plays a causal role in Parkinson's disease (PD). The SNCA protein modulates neurotransmission via the SNAP receptor (SNARE) complex assembly and presynaptic vesicle trafficking. The striatal presynaptic dopamine deficit is alleviated by treatment with levodopa (L-DOPA), but postsynaptic plastic changes induced by this treatment lead to a development of involuntary movements (dyskinesia). While this process is currently modeled in rodents harboring neurotoxin-induced lesions of the nigrostriatal pathway, we have here explored the postsynaptic supersensitivity of dopamine receptor-mediated signaling in a genetic mouse model of early PD. To this end, we used mice with prion promoter-driven overexpression of A53T-SNCA in the nigrostriatal and corticostriatal projections. At a symptomatic age (18 months), mice were challenged with apomorphine (5 mg/kg s.c.) and examined using both behavioral and molecular assays. After the administration of apomorphine, A53T-transgenic mice showed more severe stereotypic and dystonic movements in comparison with wild-type controls. Molecular markers of extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation and dephosphorylation, and Fos messenger RNA (mRNA), were examined in striatal tissue at 30 and 100 min after apomorphine injection. At 30 min, wild-type and transgenic mice showed a similar induction of phosphorylated ERK1/2, Dusp1, and Dusp6 mRNA (two MAPK phosphatases). At the same time point, Fos mRNA was induced more strongly in mutant mice than in wild-type controls. At 100 min after apomorphine treatment, the induction of both Fos, Dusp1, and Dusp6 mRNA was significantly larger in mutant mice than wild-type controls. At this time point, apomorphine caused a reduction in phospho-ERK1/2 levels specifically in the transgenic mice. Our results document for the first time a disturbance of ERK1/2 signaling regulation associated with apomorphine-induced involuntary movements in a genetic mouse model of synucleinopathy. This mouse model will be useful to identify novel therapeutic targets that can counteract abnormal dopamine-dependent striatal plasticity during both prodromal and manifest stages of PD.
α-突触核蛋白(SNCA)蛋白聚集在帕金森病(PD)中起因果作用。SNCA蛋白通过SNAP受体(SNARE)复合体组装和突触前囊泡运输来调节神经传递。左旋多巴(L-DOPA)治疗可缓解纹状体突触前多巴胺缺乏,但这种治疗引起的突触后可塑性变化会导致不自主运动(运动障碍)的发展。虽然目前在患有黑质纹状体通路神经毒素诱导损伤的啮齿动物中模拟了这一过程,但我们在此探索了早期PD基因小鼠模型中多巴胺受体介导信号的突触后超敏反应。为此,我们使用了在黑质纹状体和皮质纹状体投射中由朊病毒启动子驱动A53T-SNCA过表达的小鼠。在有症状的年龄(18个月),用阿扑吗啡(5mg/kg皮下注射)对小鼠进行刺激,并使用行为和分子检测方法进行检查。注射阿扑吗啡后,与野生型对照相比,A53T转基因小鼠表现出更严重的刻板和张力障碍性运动。在注射阿扑吗啡后30分钟和100分钟,检测纹状体组织中细胞外信号调节激酶1和2(ERK1/2)磷酸化和去磷酸化的分子标记以及Fos信使核糖核酸(mRNA)。在30分钟时,野生型和转基因小鼠显示出磷酸化ERK1/2、双特异性磷酸酶1(Dusp1)和双特异性磷酸酶6(Dusp6)mRNA(两种丝裂原活化蛋白激酶磷酸酶)的诱导相似。在同一时间点,突变小鼠中Fos mRNA的诱导比野生型对照更强。在阿扑吗啡治疗后100分钟,突变小鼠中Fos、Dusp1和Dusp6 mRNA的诱导均明显大于野生型对照。在这个时间点,阿扑吗啡导致转基因小鼠中磷酸化ERK1/2水平降低。我们的结果首次证明在突触核蛋白病基因小鼠模型中,ERK1/2信号调节紊乱与阿扑吗啡诱导的不自主运动有关。这种小鼠模型将有助于识别新的治疗靶点,这些靶点可以在PD的前驱期和明显期对抗异常的多巴胺依赖性纹状体可塑性。