Illyaskutty Navas, Sreedhar Sreeja, Sanal Kumar G, Kohler Heinz, Schwotzer Matthias, Natzeck Carsten, Pillai V P Mahadevan
Institute for Sensorics and Information Systems (ISIS), Karlsruhe University of Applied Sciences, Moltkestr. 30, D-76133, Karlsruhe, Germany.
Nanoscale. 2014 Nov 21;6(22):13882-94. doi: 10.1039/c4nr04529g.
MoO3 nanostructures have been grown in thin film form on five different substrates by RF magnetron sputtering and subsequent annealing; non-aligned nanorods, aligned nanorods, bundled nanowires, vertical nanorods and nanoslabs are formed respectively on the glass, quartz, wafer, alumina and sapphire substrates. The nanostructures formed on these substrates are characterized by AFM, SEM, GIXRD, XPS, micro-Raman, diffuse reflectance and photoluminescence spectroscopy. A detailed growth model for morphology alteration with respect to substrates has been discussed by considering various aspects such as surface roughness, lattice parameters and the thermal expansion coefficient, of both substrates and MoO3. The present study developed a strategy for the choice of substrates to materialize different types MoO3 nanostructures for future thin film applications. The gas sensing tests point towards using these MoO3 nanostructures as principal detection elements in gas sensors.
通过射频磁控溅射和后续退火,在五种不同的衬底上生长出了薄膜形式的三氧化钼纳米结构;在玻璃、石英、晶圆、氧化铝和蓝宝石衬底上分别形成了非排列纳米棒、排列纳米棒、束状纳米线、垂直纳米棒和纳米片。通过原子力显微镜(AFM)、扫描电子显微镜(SEM)、掠入射X射线衍射(GIXRD)、X射线光电子能谱(XPS)、显微拉曼光谱、漫反射光谱和光致发光光谱对在这些衬底上形成的纳米结构进行了表征。通过考虑衬底和三氧化钼的各种方面,如表面粗糙度、晶格参数和热膨胀系数,讨论了关于衬底的形态改变的详细生长模型。本研究制定了一种选择衬底的策略,以实现用于未来薄膜应用的不同类型的三氧化钼纳米结构。气敏测试表明,可将这些三氧化钼纳米结构用作气体传感器中的主要检测元件。