Vexler Albert, Tsai Wan-Min, Hutson Alan D
Department of Biostatistics, The State University of New York at Buffalo, Buffalo, NY 14214, U.S.A.
Am Stat. 2014;48(3):158-169. doi: 10.1080/00031305.2014.901922.
We develop a novel nonparametric likelihood ratio test for independence between two random variables using a technique that is free of the common constraints of defining a given set of specific dependence structures. Our methodology revolves around an exact density-based empirical likelihood ratio test statistic that approximates in a distribution-free fashion the corresponding most powerful parametric likelihood ratio test. We demonstrate that the proposed test is very powerful in detecting general structures of dependence between two random variables, including non-linear and/or random-effect dependence structures. An extensive Monte Carlo study confirms that the proposed test is superior to the classical nonparametric procedures across a variety of settings. The real-world applicability of the proposed test is illustrated using data from a study of biomarkers associated with myocardial infarction.
我们使用一种不受定义特定依赖结构集常见约束的技术,开发了一种用于检验两个随机变量独立性的新型非参数似然比检验。我们的方法围绕一个基于精确密度的经验似然比检验统计量展开,该统计量以无分布的方式近似相应的最强大参数似然比检验。我们证明,所提出的检验在检测两个随机变量之间的一般依赖结构方面非常有效,包括非线性和/或随机效应依赖结构。广泛的蒙特卡罗研究证实,在所考虑的各种情况下,所提出的检验优于经典非参数方法。通过一项与心肌梗死相关生物标志物研究的数据,说明了所提出检验在实际中的适用性。